
	

	 	

Using	Web	APIs	for	
Digital	Humanities	
Research	
	Sabbatical	Leave	Final	Report	

Nate	Garrelts	

Professor	of	English	|	Ferris	State	University	

	

	

	

15	January	2018	
	

Dear	President	Eisler	and	Members	of	the	Sabbatical	Committee,	
	
Thank	you	for	granting	me	a	one	semester	sabbatical	during	the	Fall	2017	term.	Your	generous	support	
provided	me	with	the	uninterrupted	time	I	needed	to	enhance	my	skills	and	pursue	interdisciplinary	
research.		
	
During	my	sabbatical,	I	researched	Web	APIs	and	learned	new	coding	skills	so	that	I	could	better	work	
with	these	APIs.	A	significant	amount	of	time	was	also	spent	developing	my	talents	as	I	produced	various	
sample	web	pages.	I	have	included	a	detailed	summary	of	my	activities	with	this	letter	and	attached	
other	supporting	evidence.	Since	I	met	all	the	project	objectives	as	outlined	in	my	sabbatical	proposal,	
this	project	could	be	considered	highly	successful.	
	
I	am	grateful	for	this	sabbatical	experience	and	will	draw	on	my	new	knowledge	as	I	produce	interesting	
scholarship,	interact	with	students,	and	serve	the	university	community.	
	
Sincerely,	
	

	
	
Nate	Garrelts	
Professor	of	English	
		

	
	
	
	

	

	 	

	 1	

Using	Web	APIs	for	Digital	Humanities	Research	
I.	Description	of	Sabbatical	Activities	
Application	Program	Interfaces	(APIs)	allow	programmers	to	easily	access	complex	services	and	data	
from	companies	like	Google	and	Facebook.	Humanities	projects	also	develop	APIs	to	share	research	with	
the	world.	During	my	sabbatical	semester,	I	familiarized	myself	with	APIs	that	are	useful	for	humanities	
research,	enhanced	my	skills	in	several	programming	languages	and	web	development	frameworks,	and	
practiced	making	API	enhanced	webpages.	This	sabbatical	helped	me	gain	the	skills	I	need	to	work	on	
other	more	ambitious	digital	humanities	research	projects.		
	
When	the	sabbatical	began,	I	had	the	following	objectives:	

1.	Familiarize	myself	with	APIs	that	may	be	useful	for	humanities	research.	
2.	Become	knowledgeable	of	XML	and	JSON	formats	used	by	REST	based	APIs.	
3.	Enhance	my	programming	skills	in	languages	useful	for	working	with	REST	APIs	(HTML,	
JavaScript,	PHP,	and	Python).		
4.	Familiarize	myself	with	popular	web	development	frameworks	for	these	languages	
(HTML/Bootstrap,	JavaScript/AngularJS,	and	Python/Django).	
5.	Produce	proof-of-concept	API	enhanced	webpages	for	scholars	working	in	the	humanities.	

During	the	sabbatical,	I	followed	the	work	as	it	was	initially	proposed.	Screenshots	of	my	work	have	been	
attached	in	the	appendix.	This	includes	course	completion	certificates,	sample	code,	and	screenshots	of	
webpages.	All	sabbatical	activities	took	place	at	my	home	using	my	university	issued	computer	and/or	
personal	computer(s).	I	paid	for	the	Code	School	registration	fees	with	my	own	funds.	IBM	graciously	
allows	faculty	a	free	year	of	Bluemix,	which	I	am	currently	using	to	host	one	of	my	project	websites.	

Week	1-2.	At	the	start	of	the	sabbatical,	I	collected	information	about	APIs	that	may	be	useful	
for	humanities	research	and	used	them	in	my	web	browser	to	give	me	a	sense	of	different	
interesting	mashups	and	the	format	of	the	data.	I	kept	notes	in	a	simple	.TXT	file.	The	most	
promising	APIs	included	the	New	York	Times,	Marvel	Comics,	IBM	Watson,	Wikipedia,	and	NASA.	

Week	3.	During	this	time	period,	I	researched	and	prepared	my	development	environment,	
which	changed	as	my	needs	changed.	Initially,	I	considered	both	text	editors	and	IDEs.	Because	it	
is	cross	platform	compatible	and	light	on	resources,	I	chose	Visual	Studio	Code	from	Microsoft	as	
my	primary	code	editor.		At	times,	I	also	used	a	Cloud9	server	that	I	hosted	from	my	home	along	
with	an	ElephantSQL	database.	For	production,	I	later	used	IBM	Bluemix	with	Compose	for	
PostgreSQL.		

Week	4-6.	I	began	my	studies	by	completing	the	HTML/CSS	path	on	Code	School,	which	included	
Bootstrap	and	other	topics.	This	was	informative,	as	I	learned	about	changes	in	HTML5,	mobile	
development,	and	other	issues	that	impact	web	design	for	different	browsers.	While	much	of	
this	training	focused	on	CSS	and	the	appearance	of	webpages	at	a	depth	that	was	not	practical	
for	my	needs	or	interests,	the	Bootstrap	modules	were	really	useful.	Using	this	framework	is	

	 2	

much	more	practical	than	writing	HTML	and	CSS	from	scratch.		

I	found	throughout	my	early	training	on	Code	School	that	the	basic	modules	often	gave	an	
overview	of	the	language,	the	middle	courses	delved	into	the	nuances,	and	the	later	modules	
gave	practical	tips	that	developers	really	use.		
	
Week	7-9.	I	completed	the	JavaScript	path	on	Code	School,	which	covered	JavaScript,	jQuery,	
Angular,	and	other	topics.	Of	the	modules	in	Code	School,	the	first	JavaScript	Road	Trip	module,	
JavaScript	Best	Practices,	Try	jQuery,	and	Node.js	modules	were	the	most	enjoyable	for	me,	
which	is	something	that	I	would	not	have	predicted	when	I	started	this	project.	I	was	not	as	
impressed	with	client	side	frameworks	like	Angular	and	AngularJS,	which	seemed	overly	complex	
to	me	(at	least	at	the	time).	Upon	revisiting	Angular	near	the	end	of	the	project,	I	could	
understand	the	appeal	but	still	preferred	other	methods	for	front	end	development.	

Week	10-12.	I	completed	the	PHP/Laravel	and	Python/Django	paths	on	Code	School.	Basic	PHP	
was	easy	and	useful,	however	Laravel	was	not	as	easy	for	me	as	I	had	hoped.	And	while	the	first	
two	modules	in	Python	were	fun,	I	was	not	as	impressed	with	using	Django	for	web	
development—it	just	did	not	seem	as	graceful	as	other	solutions.	In	fact,	Python	seemed	to	lose	
its	appeal	to	me	the	more	I	worked	with	it.	For	example,	I	often	struggled	to	format	my	code	
exactly	as	required	by	not	indenting	properly.	This	is	not	surprising	in	hindsight	considering	how	
much	I	enjoyed	the	forgiving	and	asynchronous	nature	of	ECMAScript/JavaScript	during	my	
previous	sprint.		

Week	13-15.	During	this	time,	I	practiced	making	API	calls	and	webpages	outside	of	
CodeAcademy	and	focused	my	skillset.	There	was	a	lot	of	trial	and	error.	In	general	modern	web	
application	coding	is	a	chaotic	mishmash	of	modules,	languages,	and	approaches	to	make	
applications	easier	to	code,	run	faster,	and	look	better.	While	different	approaches	clearly	work	
better	in	different	situations,	it	made	the	most	sense	to	develop	a	skillset	that	is	efficient,	
effective,	transferable,	and	not	likely	to	disappear.	So,	I	decided	to	code	my	pages	in	HTML,	use	
Bootstrap	to	help	with	CSS	formatting,	make	data	calls	to	REST	APIs	using	JQuery/Ajax,	and	to	
have	Node.js	on	the	backend	interacting	with	my	Postgres	database,	pulling	data	from	the	
internet,	and	making	APIs	available	to	my	web	applications.	The	advantage	of	this	model	is	that	
Javascript	is	used	on	both	the	front	end	and	back	end,	Node.js	is	increasingly	popular,	and	it	
helped	me	to	quickly	become	a	full	stack	developer.		

I	used	the	skills	I	gained	to	create	increasingly	complex	sample	webpages	that	call	one	or	more	
APIs.	Eventually,	I	began	developing	a	project	that	used	the	Watson	AI	to	study	literature	and	
devoted	my	time	to	that.	I	published	this	site	on	IBM	Bluemix.	In	using	Bluemix,	I	also	learned	
more	about	GIT,	Cloud	Foundry,	and	the	IBM	Watson	AI.		Near	the	end	of	the	project,	after	I	
understood	more	about	full	stack	development,	I	also	revisited	some	earlier	topics.	As	one	
example,	I	made	a	book	database	web	app	using	a	MERN	stack	(MongoDB,	Express,	React,	and	
Node).	Users	were	authenticated	using	social	media	accounts	and	JSON	Web	Tokens	(JWT).	
	

	 3	

Week	16.	In	the	final	week	I	collected	project	documentation	and	wrote	a	draft	of	this	sabbatical	
report.	

II.	Publications/	Presentations	(Scheduled)	
A	sample	of	my	research	is	currently	hosted	live	at	aireads.com.	I	was	also	accepted	to	present	my	
research	at	the	International	Association	for	Fantastic	in	the	Arts	conference	in	March	2018;	however,	
recent	health	events	will	prevent	my	participation.	
	
III.	Graduate	Courses	and/or	Seminars	Attended	
Although	I	did	not	complete	any	graduate	courses,	I	did	complete	highly	technical	code	training	online	
and	have	attached	a	screenshot	of	my	completion	certificates/levels	as	evidence.	Specifically,	I	
completed	the	learning	paths	for	these	languages:		
	

HTML/CSS-	This	learning	path	included	13	courses	grouped	according	to	these	topics:	Getting	
Started,	Intermediate	CSS,	SVG,	CSS	Preprocessors,	CSS	Frameworks,	Design,	and	Interactive	
Website.	
	
JavaScript-	This	learning	path	included	17	courses	grouped	according	to	these	topics:	JavaScript	
Language,	Jquery,	Client-Side	Frameworks,	Server-Side	Frameworks,	Coffee	Script,	MEAN	Stack,	
and	AnguarJS	App.	
	
PHP-	This	learning	path	included	four	courses	on	PHP	and	the	Laravel	framework.	
	
Python-	This	learning	path	included	four	courses	that	introduced	Python	and	Django.	
	

IV.	Plans	for	Future	Work	
The	main	purpose	of	this	research	was	to	help	me	gain	the	skills	I	needed	to	work	on	other	more	
ambitious	research	projects	(like	studying	literature	with	AI).	During	the	next	phase	of	this	research	I	will	
be	developing	other	similar	projects	that	utilize	API	data.	I	also	plan	to	apply	for	a	Fulbright	research	
scholarship	to	continue	my	research. In	pursuing	this	opportunity,	I	hope	to	extend	my	professional	
network	and	learn	new	skills.	
	
V.	Impact	of	the	Leave	on	Professional	Responsibilities	
This	research	has	enhanced	my	ability	to	support	students	in	our	TPC	program	who	are	interested	in	web	
design	and	social	media.	I	am	also	prepared	to	serve	as	a	resource	for	others	on	campus	who	may	be	
working	with	this	technology	especially	in	the	Accountancy,	Finance,	and	Information	Systems	
department.	Since	many	topics	discussed	in	information	security	are	web	related,	I	may	be	a	valuable	
resource	for	students	in	ISIN	and	MS-ISI.	Most	of	all,	I	am	poised	to	produce	some	cool	research	that	will	
excite	students	and	bring	positive	attention	to	the	university.	
	

	

	

	

	 4	

VI.	Appendix	

	

Figure	1.	This	shows	the	number	of	courses	and	levels	I	completed	in	Code	School.	

	

	

	 6	

	

Figure	3.	This	is	a	portion	of	the	web	page	that	I	use	to	enter	data	into	my	database.	

	 7	

	

Figure	4.	This	is	the	first	portion	of	the	results	that	are	returned	to	users.	I	used	public	domain	texts	and	
images.	

	 8	

	

Figure	5.	As	users	scroll	down	they	see	more	information	about	the	text	and	the	Watson	analysis.	There	
are	many	other	categories	and	this	is	just	a	very	short	sample.	

	 9	

Figure	6.	The	site	also	includes	a	contact	page	that	gives	information	about	the	project.	

	

	 10	

	

Figure	7.	This	is	the	first	portion	of	the	html	code	that	renders	webpages	for	each	text	that	has	been	
analyzed	by	Watson.	The	actual	code	is	much	longer	and	more	complex.	

<!DOCTYPE html>

<html lang="en">

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-
fit=no">
 <meta name="description" content="">
 <meta name="author" content="Nate Garrelts">
 <link rel="icon" href="">

 <title>AIReads.com</title>

 <!-- Bootstrap core CSS -->
 <link href="./bootstrap.min.css" rel="stylesheet">

 <!-- Custom styles for this template -->
 <link href="./narrow-jumbotron.css" rel="stylesheet">
 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>

 </head>

<body>

<script>
 //this is basically a handmade template that pulls information from the database
and puts into the page at the specified
 //id. all of the processing is done really by the javascript
 var searchParams = new URLSearchParams(window.location.search); //gets the
paraters from the URL
 var idsubmitted= searchParams.get("id")
 console.log(idsubmitted)

 $.ajax({
 type: "POST",
 url: "/samplerequest/"+idsubmitted, //notice when i submit the id do not put a
:
 dataType: "json",
 success: function(data) {
 console.log(data);
 var formattedResults = JSON.stringify(data, null);
 var obj = JSON.parse(formattedResults);
 $(document).ready(function() {
 $('#sourcetitle').html('<h1>' + obj[0].sourcetitle + '</h1>')

	 11	

	

Figure	8.	This	is	a	portion	of	the	node.js	code	that	saves	data	to	my	postgres	database,	sends	data	to	
Watson,	and	serves	data	to	my	webpage	when	requested.	My	code	is	heavily	commented,	which	makes	
it	difficult	to	reproduce	in	this	format.	

//This is the api server for my IBM Watson Reader.
// These are the NPM packages that are required to make the server work they
need to be installed manually or as part of a package.json
// ==

var express = require('express'); // this calls express which is a
webframework
var app = express(); // this defines app as using express
var bodyParser = require('body-parser'); // this requires bodyParser which is
middleware to process JSON for Express and expose the html body
var cookieParser = require('cookie-parser'); //this is cookie parsing
middleware needed for authenticating users
var session = require('express-session'); //this enables storig session data
and works with the cookie parser
var morgan = require('morgan'); //this is a debug logger to show what is
happening in the program
var myuser = require('./usercode'); //this is requiring and external js file
that actually just sets up the user login database
var path = require('path'); // this is a core module and you don't
need to put in in the package.json it used to process paths
const PersonalityInsightsV3 = require('watson-developer-cloud/personality-
insights/v3'); //IMPORTANT the NPM for watson-developer-cloud needs to be
installed too notice the short name
const {Pool} = require('pg'); // this is the package to use a postgres
database the handlbars are an ECM6 thing
const pool = new Pool({ // this is the connection iformation for the
pool to connect to the DB generally you would not put it here plainly
 host: 'sl-us-south-1-portal.10.dblayer.com', //this program uses a
postgreSQL database hosted by elephantsql
 user: 'admin',
 password: 'password deleted here', //I have deleted mypassowrd for
security reasons
 database: 'compose',
 max: 10,
 port: 25113,
 idleTimeoutMillis: 30000,
 ssl: true
})

var port = (process.env.VCAP_APP_PORT || 3000); //set ibm blumix port or use
default
var host = (process.env.VCAP_APP_HOST || 'localhost'); //set ibm bluemix host or
use local host

// These functions further esatablish our server envrionment
// ===
app.use(function(req, res, next) { // this first section enables
CORS so that I can use the server accross domains
 res.header("Access-Control-Allow-Origin", "*");
 res.header("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-
Type, Accept");
 next();
});

