
Eric German
Professor Zeeuw
New Visual Studies
04/19/11

Cellular Automata: Simple Rules Generate Complex Results

I started this research project with the intent of investigating complex systems that

are generated from contrastingly simple rules. I did not have a good working theory for

what I meant by "simple" or "complex;" I also only partially knew what I meant by

"system." I had an interest in fractal and fractal like expressions, such as the Koch curve,

the Cantor set and various biological systems that appeared to have self-similar growth. I

had the preconception that if I did discover complex systems that are generated from

simple constituent elements or rules that I would only have very superficial access to such

systems because of my lack of mathematical expertise. If I were to encounter very complex

systems generated from very simple rules, the actual deep explanations of how these

systems functioned would be several layers deeper than my abilities would allow me to

uncover. However, I seemed to have a fairly good grasp of the Koch curve, the Cantor set

and the Sierpinski carpet through their graphic instantiation alone (Figure 1); even if I

could not understand their mathematical or algorithmic expressions it was quite easy to

understand them just by looking at their generation. It turns out that there are a very large

number of complex systems that are generated from simple rules. While these systems

have very complex and erudite mathematical explanations, much of what makes these

systems interesting can be grasped by simply looking at their graphic expressions. These

systems are called cellular automata (abbreviated by CA in this paper). A CA is cellular

not in the biological sense of a cell; what we here mean by cellular is a unit on a grid that

can express various states, most often represented by color (white, black, shades of gray,

 2

etc). Imagine a piece of gridded paper. Each square (cell) on this piece of paper is bordered

by eight neighbors (four on each side of the cell and four orthogonal neighbors). You could

also imagine a grid of light-bulbs that each have eight neighbors; each light bulb is

connected to all of its neighbors by wires that communicate whether a particular bulb is off

or on (white or black on our gridded paper). Alongside our gridded paper or light bulbs we

have a set of rules that determine what state a light bulb or cell should take during the next

generation. The rule could say, “turn on (or become black) if the majority of your

neighbors are on (or black); otherwise, stay off (or white).” What happens next is every

cell or bulb looks at its eight neighbors and then to the rule, and each cell or bulb

simultaneously changes its state according to the rule and the states of its neighbors. In this

way the CA’s we are investigating are discrete―they check and change their states all at

once for each generation. An illustration helps to understand how our simple CA is

functioning here (Figure 3). Additionally, http://conwaylife.com/ in a browser that supports

java and the program Golly, which I have included on my disk, will allow us to see CA

function dynamically.

CA’s are essentially very simple computer programs. There is a set of rules, a

board or grid on which the cells express states of off or on (or white or black), a set of

inputs (which cells express which color at the start of running the CA―also called

“seeding” the CA), and a set of outputs (the state of each cell each generation). While we

describe CA’s as simple computer programs it must be noted that it is not necessary that

we run these programs on a computer; indeed its entirely reasonable to use analog media to

express CA, such as our gridded graph paper, or an array of light-bulbs in a grid, or a

crowd of people with cardboard signs painted white on one side and black on the other.

This notion is similar to the notion that a computer does not necessarily have to be built

http://conwaylife.com/

 3

with electrical switches; it is quite conceivable that a computer could be constructed with

fluid pressures, chemical reactions, or rubber bands and Tinker Toys as in Figure 3 (Hillis

10-16). The computations in this hypothetical Tinker Toy computer would of course be

much slower and prone to more error due to the possibility of the rubber bands or sticks

wearing out, just as our hypothetical crowd of people expressing our CA with cardboard

signs would be slow and more erroneous than a CA executed on a digital computer.

In our sample CA in Figure 3 our rule was “turn black if the of the cells in your

neighborhood are black, otherwise turn (or stay) white.” What other sort of rule-sets could

we set up for our nine-celled neighborhood? We could have a rule-set that says, “if there is

at least one black cell in your neighborhood, turn black,” or “if there are exactly two black

cells in your neighborhood turn white.” The number of different rule sets for these type of

nine cell neighborhood CA’s is astronomical. Mitchell sets the number of possible rules

that include only two cell states (black and white) at 2 raised to the 512th power, a number

“many times larger than the number of atoms in the universe” (148). One begins to

understand the magnitude of possibilities that CA’s possess.

So far we have been looking at 2D cellular automata. We call this 2D because they

are laid out on a grid that has two axis. While we will look at one-dimensional and 2D-

dimensional CA later (CA’s that are expressed in a simple line and in cubic space,

respectively), let us take a moment to unpack some of the other specific traits of our

sample CA (Figure 4). We have understood that a cell looks to its adjacent 8 neighbors for

information on what state to take when it updates each generation. But what about the cells

that lie on the edges of the grid? These cells have only 3 or four neighbors. What we can

do is either imagine an infinitely large grid, in which there are no edges, or think of our

grid as continuous. If we use a continuous grid, then a neighborhood that begins on the top

 4

of the grid completes itself on the bottom of the grid. A cell on the leftmost edge of our

grid is part of a neighborhood that extends to the rightmost (Figure 4). Also it must be

made clear that each cell is a member of several neighborhoods simultaneously. A center

cell in one neighborhood is the upper left cell in an adjacent neighborhood. However each

cell only checks its eight adjacent neighbors when determining its state for each

generation.

Now that we have a basic understanding of how CA function we can look very

briefly at their historic development. Computer scientist and all around genius John von

Neumann invented the notion of cellular automata in the late 1940's on a suggestion by the

great genius polymath Stainslaw Ulam (Mitchell 149). Von Neumann is the man who

introduced the world to cybernetics, and his work with CA was a result of his trying to

model biological self-reproduction. While at first von Neumann was using 3D models

based on factories and toy models, he later realized that two dimensions would be

sufficient. Wolfram goes on to explain that von Nuemann originally constructed a CA with

29 possible color combinations and very complicated rule-sets "specifically set up to

emulate the operations of components of an electronic computer and various mechanical

devices" (Wolfram 876). Von Nuemann described plans to create a 200,000 cell grid which

would allow self-reproduction of various seed shapes (recall that “seeding” refers to the

initial state of each cell in “generation 0” of a CA). The 1960's saw scientists and

theoreticians describing CA with increasingly complex mathematical theorems, and using

principles gleaned from these studies to pursue “whimsical” attempts at creating self-

reproducing machines. In the 1950’s scientists recognized that many CA could be seen as

parallel computers. Wolfram explains that by the 1970's interest in CA waned and became

an increasingly "esoteric" domain (876-77).

 5

However, in 1970 John H. Conway introduced his mathematical pass-time called

The Game of Life, or Conway's Game of Life, or simply Life. This game used a simple

binary system of black and white cells and a fairly simple rule set. Life gained quite a bit

of popularity following its publishing in an October 1970 Scientific American article

“Mathematical Games: The Fantastic Combinations of John Conway's New Solitaire Game

‘Life’” by Martin Gardner. Conway was a very established and successful mathematician

at the University of Cambridge working on various esoteric problems in group theory and

number theory. But in addition to his serious work, the Scientific American article

described Conway as often engaging in "recreational mathematics."

Conway's Game of Life is a 2D discrete CA that uses the following rules. He

likened a black cell as “alive” and a white cell as “dead.”

1. If an alive cell has two or 2D alive neighboring cells, it stays alive.
2. If a dead cell has exactly 2D alive neighboring cells, it comes to life.
3. Otherwise, the cell will stay dead or die (Conway analogized a
neighborhood with four or more alive cells killing its neighbors due to
overpopulation, and a neighborhood with two or less cells killing its
neighbors due to underpopulation).

Like most 2D CA a cell’s neighborhood consists of the eight cells surrounding the center

cell. Conway explained that he chose his rules carefully after much experimentation based

on his following pre-conditions:

1. There should be no initial pattern for which there is a simple proof that the
population can grow without limit.
2. There should be initial patterns that apparently do grow without limit.
3. There should be simple initial patterns that grow and change for a
considerable period of time before coming to end in 2D possible ways: fading
away completely (from overcrowding or becoming to sparse), settling into a
stable configuration that remains unchanged thereafter, or entering an
oscillating phase in which they repeat an endless cycle of two or more periods
(Gardner).

 6

Gardner explains that Conway ran his early Game of Life by hand on a Go game board,

using white and black Go discs as the CA’s cells. This was of course in the early 1970’s

before the personal computer explosion; calculation of each generation was slow and had

to be done methodically to avoid mistakes. Pagels characterizes Conway’s Life as “not

really a game but an example of artificial life,” and specifically as a type of artificial life

that only exists in computer simulations (103). However soon after the Scientific American

article Conway’s Life become very popular among students and mathematically inclined

professionals and hobbyists. The personal computer boom soon allowed Conway’s Life to

be carried out on computer screens in garages and university basements around the

country, and a whole generation of computer enthusiasts were influenced by the growing,

buzzing, oscillating and burgeoning patterns on their screens (Rokicki Interview).

Weinberg recalls how “dangerously addictive” Life was for physics graduate students in

the 1970’s (1). In his 1988 text Pagels wonders about the limits of Conway’s life,

suggesting how:

Conceivably, if the area of interaction was large enough, rather than just a
computer screen, this artificial life could go on forever, perhaps creating more
and more complex forms. It is amazing to see how a handful of simple rules
can generate such complexity. Likewise, it is impressive how the rules of
atomic combinations in the real world can generate the complexity of living
things―the real game of life (102).

Twenty years later our technology has advanced enough to create a Life board where the

area of interaction is a great deal larger in the software Golly. While the computer screen

still delimits the space, our ability to zoom out at further and further levels of magnitude

really shows how much complexity Conway’s Life can exhibit. Pagels’ comment that that

“there is quite an inventory of life forms, and hackers are occasionally discovering new

ones” shows the robustness of Life’s ability to serve as the setting for an ever increasing

 7

amount of forms and patterns based on simple rules. There are now at least 600 distinct

and interesting patterns on the Conway Life wiki http://conwaylife.com/. So far we have

been looking at 2D CA, but as I mentioned before there are simpler CA that still generate

complex and interesting patterns. If a 2D CA operates on a grid, a one-dimensional CA

operates on a line; each cell’s neighborhood consists of those cells that lie directly on the

right or left. The rule-set then consists of what color the cell was during its previous

generation and what color its immediate left and right neighbors were there previous

generation (Figure 5 shows a 2D rule set in graphic form, and figure 6 shows the first ten

generations of a slightly different 2D CA). Wolfram says "Any program can at some level

be thought of as consisting of a set of rules that specify what it should do at each step."

One dimensional CA are very simple programs that can be seen graphically, although they

don't really "do" anything beyond carrying out their programs from their initial inputs (23).

The majority of Wolram's work in "A New Kind of Science" deals with simple one-

dimensional cellular automata. There are 256 such CA, and the first fifty or so generations

of each of these are shown in Figures 7 and 8. The images in Figures 6-8 show what seem

to be a 2D grid, but displaying the CA this way simply allows us to see many generations

at once; to run and display each generation in only one line would make a visual analysis

of these CA much more difficult. And in fact Wolfram stresses the important fact that

much is gleaned from seeing the graphic output of these systems. It is the striking graphic

and visual nature of these CA that leads Wolfram to most of his insights and boldest

claims. Further, one notices that each of these CA begin with an input or seed of a single

black cell. Any number of other inputs can serve as the first generation, but the single

black cell is essentially the simplest input one can use.

http://conwaylife.com/

 8

Most of these one-dimensional CA in figure 4 demonstrate fairly uninteresting

behavior, while a smaller number show more interesting regular nested patterns. A smaller

number of these CA show slightly more complex behavior; however it is rules 30 and 110

that sparked Wolfram's two decade and 1200 page work. Rule 30 is shown in figure 9

along with its rule-set. From seemingly very simple rules, and just one black seed cell, an

enormous degree of complexity is produced. Conway's Life was shown to demonstrate a

large degree of complexity from a deceivingly simple set of rules. While many seed shapes

in Life peter out and "die," or settle into stable oscillations or "still- lives," many others

produce unexpected, interesting, and to all appearances very complex behavior. The simple

program of rule 30 produces just as complex behavior with arguably simpler preconditions.

Wolfram does not limit his investigations to simple one-dimensional CA. He looks

at a variety of other simple programs including substitution systems, simple fractal

programs, register machines, numerical systems, systems that involve satisfying specified

constraints, Turing machines, and 2 and 3D-dimensional CA (Figures 10, 1 and 12). He

also looks at simple programs that seem to emulate or simulate natural systems such as

snowflakes and seashell patterns (Figures 13 and 14). In all of these vast and different

types of systems he demonstrates how very simple programs create very complex

outcomes.

Wolfram's project describes a new way of doing science. He argues that the

computational universe―the space that exists only in computers―can be mined to solve

problems that traditional science and mathematics are poorly equipped to solve. He

reckons that when traditional science encounters a problem or system of particular

complexity there must be equally complex reasons that give rise to such complexity. He

states:

 9

But my discovery that simple programs can produce great complexity makes
it clear that this is not in fact correct. And indeed in the later parts of this book
I will show that even remarkably simple programs seem to capture the
essential mechanisms responsible for all sorts of important phenomena that in
the past have always seemed far too complex to allow any simple explanation
(4).

Further he says:

But on the basis of many discoveries I have been led to a still more sweeping
conclusion, summarized in what I call the Principle of Computational
Equivalence: that whenever one sees behavior that is not obviously
simple―in essentially any system―it can be thought of as corresponding to a
computation of equivalent sophistication. And this one very basic principle
has a quite unprecedented array of implications for science and scientific
thinking.

For a start, it immediately gives a fundamental explanation for why simple
programs can show behavior that seems to us complex. For like other
processes our own processes of perception and analysis can be thought of as
computations. But though we might have imagined that such computations
would always be vastly more sophisticated than those performed by simple
programs, the Principle of Computational Equivalence implies that they are
not. And it is this equivalence between us as observers and the systems that
we observe that makes the behavior of such systems seem to us complex (5-
6).

This Principle of Computational Equivalence essentially understands the universe as a

giant cellular automaton, or as a universal computation machine. The universe is a

computer and all of its constituent parts emerge from simple programs. Mitchell provides a

succinct gloss of this principle:

1. The proper way to think about processes in nature is that they are
computing.
2. Since even very simple rules (or “programs”) such as Rule 110 can support
universal computation, the ability to support universal computation is very
common in nature.
3. Universal computation is an upper limit on the complexity of computations
in nature. That is, no natural system or process can produce behavior that is
“noncomputable.” 4. The computations done by different processes in nature
are almost always equivalent in sophistication (156-157).

 10

Mitchell explains that Wolfram sees natural systems in the world constantly possessing

and processing information just like rule 110 (157).

Here we must take a moment to understand what computer scientists mean by

“universal.” A Turing machine (developed by genius mathematician Alan Turing in the

1930s) is a sort of conceptual device or mental program that very specifically describes

what is and what is not able to be computed. Turing never actually built one of these

machines except on paper, but they have been realized with hardware since then (Rokicki

interview). Turing machines represent the simplest framework to carry out logical

operations. A Turing machine is universal if it can compute any other arbitrary Turing

machine. In this sense a Turing machine sets the upper limits of computation. Weinberg

offers a succinct description:

…the Turing machine was designed to capture the essence of mechanical
logical methods. Just as a person going through a mathematical proof works
with a string of symbols, focusing on just one at a time, the Turing machine
works on a one- dimensional sequence of cells, each containing a symbol
taken from some finite list, with only one “active” cell that can be read and
possibly changed at each step. Also, to correspond to the fact that a person
working out a proof would keep some memory of previous steps, Turing gave
his machine a memory register, which can be in any one of a finite number of
“conditions” (3).

The only difference between a Turing machine and the personal computer I am typing this

paper on and the multi-million dollar supercomputers run by governments and universities

is the speed at which each runs. The other thing to point out about universal Turing

machines is that if program can emulate a universal Turing machine, or any other machine

that has been demonstrated to be universal, then that program is also universal. Wolfram’s

conjecture that one of his simple 2D CA was capable of universal computation was proven

in a 2002 essay by Matthew Cook, Wolfram’s research assistant (Cook 2002). Wolfram

offers an example of the proof, which basically amounts to rule 110 being equivalent to

 11

another type of already known universal system known as a tag system. Fifty years earlier

von Neumann constructed his 2D CA with universality in mind explicitly (Wolfram 1117).

It is not very obvious how rule 110 is “computing” anything; however, Wolfram

provides some simpler CA that are clearly doing some sort of computation (Figure 15). For

example elementary rule 132, the top image in Figure 15, can be seen as computing if a

given number is even or odd (638). For no matter how many cells one starts with, a

singular black cell repeating indefinitely down the same column will remain if the number

is odd, and no cells will remain or repeat if the number is even. A slightly more complex

cellular automaton, the second image in Figure 15, is seen to compute the square of any

given number (639). In the last image in Figure 15, one can see elementary rules 94, 62,

190 and 129 as computing even numbers, multiples of 3, multiples of 4 and powers of 2,

respectively. Figure 16 shows a more powerful CA computing prime numbers (640). These

examples of simple programs computing various numerical propositions are not at first

obvious; we normally do not think of how computer programs operate, and these are quite

unusual. However, from these simple programs one can imagine much more complex

programs being built.

This idea of universality is more easily understood by taking a quick look at some

meta-cellular automata. Golly has several very powerful examples of these meta- programs

(Figure 17), and Wolfram also provides an example (Figures 18-20). The idea of a meta-

CA is that while its particular rule-set remains constant, by applying specific inputs, the

meta-CA can emulate a large number of other normal CAs. This idea of emulation is also

related to the idea of translation, and in particular the notion of translating the inputs and

outputs from one type of program into equivalent input and outputs of another type of

program. Dr. Rokicki says, “The idea of a meta-program though is loosely related to a

 12

Turing machine's ability to simulate an arbitrary Turing machine (which is a fundamental

result in computer science and another amazing one)” (Rokicki Interview). Here is one

instance where my superficial understanding of the mathematics behind these types of

programs does not allow for deeper explanation.

Clearly the rule set in Figure 20 is much more complicated than what we have seen

with the simple 2D CA. While a denser description might be possible I believe that images

of these meta-programs really reveal how amazing these programs are better than a

discursive explanation might.

What, exactly, do we mean when we say that a system is “complex?” Mitchell

quotes a 2001 paper by physicist Seth Lloyd that offers the following questions to keep in

mind while judging a system or object’s complexity: “How hard is it to describe? How

hard is it to create? What is its degree of organization?” (96). In that same paper Lloyd

gives about forty historical examples of how thinkers have theorized complexity; I will

briefly gloss over three. The first theory asks how deep is a system’s algorithmic

information content. In this conception of complexity something is complex based on the

length of the shortest possible algorithm that can explain or account for that thing. This

conception is useful for some things, such as the relationship of a circle’s diameter to its

area, but less useful for other things, such as tables or people (Mitchell 98, Hillis 100).

Hillis nicely describes the shortcomings of this type of conception of complexity

when he is theorizing about the human brain. He says, “it is possible that a satisfactory

description of what the brain does will be almost as complex as a description of the

structure of the brain―in which case, there is no meaningful sense in which we can

understand it” (141). In other words an algorithm cannot compress some things; the system

can be understood only by observing it unfold. To put it another way, when we attempt to

 13

express the informational content of some things (like the brain possibly) through an

algorithm, what we end up with is an algorithm as long or longer than the informational

content itself.

The second conception of complexity is concerned with a system’s “fractional”

dimension. For example the coastline of Britain, the curves in Figure 1, and other nested,

rough, and self-similar shapes can be described using fractal mathematics. However

surfaces and objects that have either extreme regularity such as the Platonic solids, or

extreme randomness at various magnification, not mentioning systems such as humans and

cultures, really fail to be described by the fractional conception of complexity (Mitchell

103).

Finally one might understand complexity as a degree of hierarchy. This idea

supposes that a system’s complexity is a function of the degree of subsystems that make up

the attendant super-system. Mitchell paraphrases Herbert Simon’s 1962 paper “The

Architecture of Complexity,” when she explains that “the most important common

attributes of complex systems are hierarchy and near-decomposability.” Hierarchy in the

body runs from organism to organs, tissues, cells, etc. Near-decomposability is the notion

that “there are many more strong interactions within a subsystem than between

subsystems. As an example, each cell in a living organism has a metabolic network that

consists of a huge number of interactions among substrates, many more than take place

between two different cells” (Mitchell 109-110). This conception of complexity seems to

deal with natural and cultural systems more readily than the algorithmic or fractional

conceptions, and perhaps with our meta-programs discussed above. However its not clear

how a system such as a 1D CA that Wolfram describes might be broken down into

hierarchal elements.

 14

Wolfram has a rather less erudite conception of complexity. He contends that “just

as one does not need a formal definition of life in order to study biology, so also it has not

turned out to be necessary so far in this book to have a formal definition of complexity.”

However he does provide a working definition; he explains that, in “everyday language,”

what we mean when we say something is complex is that we have failed to find a simple

description of the thing or its salient features that interest us (557). For an image that one

would consider basically “random,” white noise on a television set for example, any other

example of white noise on the television could be substituted for any other without losing

any salient features of the randomness. One would simply say, “It looks random.”

Wolfram says:

If we can find no simple features whatsoever—as in the case of perfect
randomness—then we tend to lose interest. But somehow the images that
draw us in the most—and typically that we find most aesthetically pleasing—
are those for which some features are simple for us to describe, but others
have no short description that can be found by any of our standard processes
of visual perception (559).

His grand point, again, is that it is quite surprising to realize that very complex

images can be produced by very simple rules. Whether this point is a novel discovery or if

he has just found a new vocabulary to state what artists and scientists have known for quite

some time is not clear.

Wolfram sees his work with simple programs having profound impacts on

mathematics, physics, biology, social sciences, computer science, philosophy, art and

technology. Wolframs bold and broad claims, along with his rather solipsistic tone,

disregard for traditional peer review and neglect of many of his predecessors and peers

working in very similar veins has garnered him quite a bit of criticism.

 15

Cosma Shalizi, for example, characterizes Wolfram’s A New Kind of Science as “A

rare blend of monster raving egomania and utter batshit insanity.” Shalizi explains how

following his publication of a paper on CA he was threatened with a lawsuit from lawyers

of Wolfram Research Inc. “because one of our citations referred to a certain mathematical

proof, and they claimed the existence of this proof was a trade secret of Wolfram

Research” (132). Shalizi points other several other instances of Wolfram either blatantly

disregarding the past work of others or aggressively protecting “his” discoveries through

litigation. Further Shalizi points out that the search for simple, unifying laws that account

for the many complexities in the world has basically been the aim of science “since at least

Galileo and Newton” (136). While Shalizi makes great effort to point out Wolfram’s lack

of professional and scientific candor (in addition to facets of A New Kind of Science he

finds simply incorrect), the formers judgment might be clouded by personal misgivings.

However, Wolfram’s idea that the universe essentially is a computer, contradistinguished

from the notion that the universe is like a computer, was noted by the scientist Fredkin

since at least the early 1980’s (Wright 29).

Other critics find fault in Wolfram’s Principle of Computational Equivalence for

different reasons. Weinberg thinks Wolfram is guilty of confusing the model for the object

being modeled. For example Wolfram produces a series of CA that, after a few hundred

generations, produce systems that look like snowflakes (Figure 13). However, Weinberg

says that real snowflakes contain a “thousand billion billion water molecules,” and

Wolfram does not produce a CA that accounts for anywhere near this amount of

complexity. Weinberg says, “If Wolfram knows what pattern his cellular automaton would

produce if it ran long enough to add that many water molecules, he does not say so” (1).

 16

This critique comes down to the notion that while CA might look like natural processes,

Wolfram has not shown that CA are in fact responsible for natural processes.

Mitchell takes a less hostile tone toward Wolfram. She agrees that simple computer

modeling and experiments are very useful for conceptualizing natural processes and in

general benefit scientific progress. However, she cannot make the leap that all

computational processes are equivalent; that is, she cannot see how the computations in her

own brain and the computations in a worm’s brain are both not only constrained by the

universal limits of computation but are also equivalent in sophistication (158). Further, she

takes issue with Wolfram’s very bold speculation that “there is a single, simple cellular

automaton-like rule that is the ‘definite ultimate model for the universe,’ the primordial

cellular automaton whose computations are the source for everything that exists” (158).

Indeed this is a very strange conception of the universe. Looking at some of the patterns in

Life and in rule 110, I am struck by what appears as a cold, calculated determinism; these

are worlds that posit a narrowly defined gridded space of existence that while allowing for

extreme novelty and emergence of pattern and growth, seem like a sadly constrained and

limited domain for human expression and ultimate existence.

Fortunately not all thinkers and mathematicians allow these types of simple

programs to shape their world-view so dramatically. For example Will Wright, the creator

of SimCity, recognizes CA’s as a way of seeing emergence in the world. He has used these

simple programs to create some of the world’s most popular simulation games. In a

discussion with musician Brian Eno (who uses simple programs to create emergent works

of music) Wright explains how SimCity is essentially just a CA dressed up with visually

appealing graphics. He explains that shortly after he created SimCity emergent properties

began to appear that mirrored real cities, such as fluctuating property values affecting

 17

gentrification. However, Wright understands that the simulation should only be taken so

far; the programmer was asked if he knew that real city planners were attempting (with

varying degrees of success) to model and plan their real cities using SimCity. Wright

warned that his toy model might be useful for visualizing the physical interaction of a city,

but that real life problems of urban blight, gentrification and transportation were much

more complicated than his game (Wright Interview).

I also encountered a refreshingly less obsessive and paranoid understanding of CA

in my interview with Golly programmer Dr. Tom Rokicki. After establishing that we both

enjoyed Conway’s Life simply for its unexpected and emergent patterns, I asked Dr.

Rokicki what some of the “practical” uses of CA were. I told him that while I was satisfied

with just watching Conway’s Life and the meta-programs unfold for their own sake, that

many of my peers pressed me with the questions “Well, the moving cells are certainly

interesting, but what are they used for? What purposes do they serve?” Dr.

Rokicki replied:

Well, when you geek out, your geek friends will understand, and your non-
geek friends will just wonder what's wrong with you. Nothing surprising
there. It's called recreational math for a reason. Knowledge has value of its
own. But I don't ever try to justify; if they don't get it, they don't get it, and
they can continue killing each other on their shoot-em-up simulations all they
want…. If you want a practical application, I think the easiest one is that
recreational math is the siren call of engineering and mathematics; it is the
cool stuff, the puzzles, that young children or young adults play with and get
sufficiently interested in to start exploring math or programming.

I will reveal here that after a couple months of studying CA and specifically the type of

systems in Wolframs A New Kind of Science, I had really started obsessing over some of

the more far out conclusions in that book. I was seeing determinism and local

neighborhoods affecting emergent behavior everywhere I looked. Scientists like Wolfram

and Fredkin draw very profound metaphysical conclusions from their work with CA, but

 18

Dr. Rokicki seemed far more grounded. He described himself as a “graybeard” that had

really gotten sucked into recreational mathematics in the 1970s as a direct result of

Conway’s Life. He told me, “Even now I have such a compelling interest in what happens

in a Life pattern as it runs.” Dr. Rokicki’s interest in mathematical recreation does not end

with Conway’s Life and Golly; he was on a team of mathematicians that recently proved

that the least number of steps to satisfy any configuration of a Rubik’s Cube is 20. He

expresses the same affinities for science and play that are exhibited in Hoberman’s Sphere.

In the same vein, Steven Johnson discusses a piece of software called StarLogo that

was developed for children and high-schoolers. StarLogo is a type of simulation software

that demonstrates the emergence of pattern and order from various random initial

conditions; small CA like blips of green and red represent slime mold bacteria, turtles,

food, and various chemical communicators. It’s school age users get to watch the blips

live, eat, breed, move and die (76, 163-69). There is a real strong link between CA,

simulation, and learning.

While working on this research project I really discovered a large number of

interrelated threads. Chaos theory gave way to complexity science. These two sciences

essentially co-evolved along with the computer in the 20th century. Therefore I was lead to

try and understand some of the basic functions of computers. Driving all of this research

was the graphic output of these programs. I have already felt the effects of looking at these

types of programs in my own work, both in having a new vocabulary to understand my

drawings and having new strategies to create them. If New Visual Studies, as an emergent

discipline, lies somewhere at the intersection among science, psychology, optics, graphic

technologies, art histories and art production, I believe a close study of cellular automata

 19

and its attendant theories provides a fantastic intellectual space to apply this type of new

study.

 20

Bibliography

Gardner, Martin. “Mathematical Games: The Fantastic Combinations of John Conway’s
New Solitaire Game “Life”,” Scientific American October, 1970: 120-123.

Hillis, Daniel. The Pattern on the Stone. London: Weidenfeld & Nicolson, 1998.

Holland, John H. Hidden Order: How Adaptation Builds Complexity. Cambridge,

Massachusetts: Perseus Books, 1995.

Horgan, John. “From Complexity to Perplexity: Can Science Achieve a Unified Theory of

Complex Systems?” Scientific American June, 1995: 74-79.

Johnson, Steven. Emergence: The Connected lives of Ants, Brains, Cities, and Software.

New York: Scribner, 2001.

Mitchell, Melanie. Complexity, A Guided Tour. New York: Oxford University Press, 2009.

Pagels, Heinz R. The Dreams of Reason: The Computer and the Rise of the Sciences of

Complexity. New York: Bantam, 1989.

Shalizi, Cosma. “A New Kind of Science,” The Bactra Review: Occasional and eclectic

book reviews by Cosma Shalizi Online Posting, 21 October 2005.
http://www.cscs.umich.edu/~crshalizi/reviews/wolfram/

Weinberg, Steven. “Is the Universe a Computer?” The New York Review of Books, Online

Posting. http://www.nybooks.com/articles/archives/2002/oct/24/
is-the-universe-a-computer/

“Will Wright and Brian Eno Play with Time” Online Posting, from The Long Now

Foundation’s talk given at Herbst Theatre on Van Ness Ave. in San Francisco,
California on Monday June 26, 02006. http://fora.tv/2006/06/26/
Will_Wright_and_Brian_Eno

Wolfram, Stephen. A New Kind of Science. Champaign, IL: Wolfram Media, 2002. Wright,

Robert. “Did the Universe Just Happen?” The Atlantic Monthly April 1988: page
29.

http://www.cscs.umich.edu/%7Ecrshalizi/reviews/wolfram/
http://www.nybooks.com/articles/archives/2002/oct/24/is-the-universe-a-computer/
http://www.nybooks.com/articles/archives/2002/oct/24/is-the-universe-a-computer/
http://fora.tv/2006/06/26/Will_Wright_and_Brian_Eno
http://fora.tv/2006/06/26/Will_Wright_and_Brian_Eno

Cellular Automata
Simple Rules Generate Complex Results

Cellular Automata

John Von Neumann

John Horton Conway Stephen Wolfram

A cell’s neighborhood is
defined by the eight
closest adjacent cells,
including cells that touch
with one side or with
one corner.

Cellular Automata

A simple set of rules is created, determining how
each generation of the automata is generated.
The first generation is arbitralirily seeded with a
number of black cells.

Cells can only be black or white (on/off,
alive/dead) in these simplest automata.

The rules state whether a cell turns white, turns
black, or remains the same.

Each cell checks its neighbors and its own state
at the same time, then adjusts its color for the
next generation. All cells change colors
concurrently, one generation at a time.

For example our rule set could be “turn black if
the majority of cells in your neighborhood are
black, otherwise turn white.”

A ridiculously large number of possible rule sets
exist for this type of 2-dimensional cellular
automata (2512, or 1.3 x 10154).

Cellular Automata

Cellular Automata

In theory the grid is extended
infinitely. For most of our
purposes we can simply use
an arbitrarily large grid.

If space doesn’t allow for an
infinite grid, we can have the
grid be “circular.”

A 3x3 neighborhood starting
on the left edge of the grid
finishes on the right side of
the grid. A neighborhood
starting on the top of the grid
extends to the bottom.

A simple set of rules is created, determining how
each generation of the automata is generated.
The first generation is arbitrarily seeded with a
number of black cells.

Cells can only be black or white (on/off,
alive/dead) in these simplest automata.

The rules state whether a cell turns white, turns
black, or remains the same.

Each cell checks its neighbors and its own state
at the same time, then adjusts its color for the
next generation. All cells change colors
concurrently, one generation at a time.

For example our rule set could be “turn black if
the majority of cells in your neighborhood are
black, otherwise turn white.”

A ridiculously large number of possible rule sets
exist for this type of 2-dimensional cellular
automata (2512, or 1.3 x 10154).

Cellular Automata

Two generations of a cellular automata with the rule
being “take on whichever state is a majority in my
local neighborhood.” The first state was arbitrarily
chosen.

Conway’s Game of Life

Conway’s Game of Life Rules:

• If an alive cell has two or three alive neighboring cells, it stays alive (turns black).

• If a dead cell (white) has exactly three alive neighboring cells, it comes to life.

• Otherwise, the cell will stay dead or die (analogous to over or under population).

Conway originally worked out this game on a Go board, methodically updating each generation while

checking for errors.

Conway’s Game of Life

Conway’s Game of Life Rules:

• If an alive cell has two or three alive neighboring cells, it stays alive (turns black).

• If a dead cell (white) has exactly three alive neighboring cells, it comes to life.

• Otherwise, the cell will stay dead or die (analogous to over or under population).

Conway’s Game of Life

Conway’s Game of Life Rules:

• If an alive cell has two or three alive neighboring cells, it stays alive (turns black).

• If a dead cell (white) has exactly three alive neighboring cells, it comes to life.

• Otherwise, the cell will stay dead or die (analogous to over or under population).

Block

Beehive

Loaf

Boat

Beacon

Blinker

Toad

Conway’s Game of Life

Conway’s Game of Life Rules:

• If an alive cell has two or three alive neighboring cells, it stays alive (turns black).

• If a dead cell (white) has exactly three alive neighboring cells, it comes to life.

• Otherwise, the cell will stay dead or die (analogous to over or under population).

Conway believed that there would be no initial arrangements of cells that would lead to

unrestrained growth and offered a $50 prize to anyone who could demonstrate such an arrangement. The

“Gosper Glider Gun” took the prize that same year.

It turns out there are many arrangements of cells that offer unrestrained growth, complex period oscillations (blinkers), and “methuselahs”
that generate complex patterns but then die out or settle into fixed states of no change.

One Dimensional Elementary Automata

The possibilities for two dimensional automata are virtually without end, especially if one begins to add additional states.
For example one could have several different colors instead of black and white. However, we can also look at even simpler
cellular automata that have just one dimension.

One Dimensional Elementary Automata

Two-Dimensional Cellular Automata Projected in Three Dimensions

Three-Dimensional
Cellular Automata

Three-Dimensional
Cellular Automata

Simple Computations

A slightly more complex computation

One Dimensional

Universal Cellular

Automata

One Dimensional

Universal Cellular

Automata

Universal Cellular

Automata

Universal Cellular

Automata

Wolfram Investigates Other Simple Systems

Wolfram Investigates Other Simple Systems

Wolfram Investigates Other Simple Systems

Computational Universality

Turing Machines!

These are a type of mental construct developed by Alan Turing in the 1930’s. They describe how computation functions,
including the top and bottom limits of computation. They limit what is computationaly possible. A computer is “universal” if it can
Emulate a Universal Turing Machine.

Computational Universality

Computational Universality

Simulation & Emulation

Simulation & Emulation

	Intro Page
	Bibliography
	Presentation - Cellular Automata
	Cartoon of machine self-replication, John Neuman, etc.
	Cellular Automata - A cell's neighborhood
	Cellular Automata - A simple set of rules
	Cellular Automata - In theory the grid is extended infinitely.
	Cellular Automata - A simple set of rules is created...
	Conway’s Game of Life Rules
	3 examples of Conway's Game of Life
	Block, Beehive, Loaf, Boat, Beacon, Blinker and Toad
	Gosper Glider Gun
	One Dimensional Elementary Automata
	One Dimensional Elementary Automata
	Evolution of cellular automata with a sequence of different possible rules.
	Evolution of Rules 0 - 127
	Evolution of Rules 127 - 255
	Five hundred steps in the evolution of the rule 30
	Two-dimensional cellular automata projected in three-dimensions
	Three-Dimensional Cellular Automata
	Three-Dimensional Cellular Automata
	Simple Computations
	A slightly more complex computation
	One-Dimensional Universal Cellular Automata
	One-Dimensional Universal Cellular Automata
	Universal Cellular Automata
	Universal Cellular Automata
	Wolfram Investigates other Simple Systems
	Wolfram Investigates other Simple Systems
	Wolfram Investigates other Simple Systems
	Complete collection of all 171 patterns...
	Computational Universality Turing Machines!
	Computational Universality
	Computational Universality
	Simulation & Emulation
	Sim City
	Sim City screen capture
	Sim City screen capture
	Sim City - two screen captures

