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Cellular Automata: Simple Rules Generate Complex Results 

I started this research project with the intent of investigating complex systems that 

are generated from contrastingly simple rules. I did not have a good working theory for 

what I meant by "simple" or "complex;" I also only partially knew what I meant by 

"system." I had an interest in fractal and fractal like expressions, such as the Koch curve, 

the Cantor set and various biological systems that appeared to have self-similar growth. I 

had the preconception that if I did discover complex systems that are generated from 

simple constituent elements or rules that I would only have very superficial access to such 

systems because of my lack of mathematical expertise. If I were to encounter very complex 

systems generated from very simple rules, the actual deep explanations of how these 

systems functioned would be several layers deeper than my abilities would allow me to 

uncover. However, I seemed to have a fairly good grasp of the Koch curve, the Cantor set 

and the Sierpinski carpet through their graphic instantiation alone (Figure 1); even if I 

could not understand their mathematical or algorithmic expressions it was quite easy to 

understand them just by looking at their generation. It turns out that there are a very large 

number of complex systems that are generated from simple rules. While these systems 

have very complex and erudite mathematical explanations, much of what makes these 

systems interesting can be grasped by simply looking at their graphic expressions. These 

systems are called cellular automata (abbreviated by CA in this paper). A CA is cellular 

not in the biological sense of a cell; what we here mean by cellular is a unit on a grid that 

can express various states, most often represented by color (white, black, shades of gray, 
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etc). Imagine a piece of gridded paper. Each square (cell) on this piece of paper is bordered 

by eight neighbors (four on each side of the cell and four orthogonal neighbors). You could 

also imagine a grid of light-bulbs that each have eight neighbors; each light bulb is 

connected to all of its neighbors by wires that communicate whether a particular bulb is off 

or on (white or black on our gridded paper). Alongside our gridded paper or light bulbs we 

have a set of rules that determine what state a light bulb or cell should take during the next 

generation. The rule could say, “turn on (or become black) if the majority of your 

neighbors are on (or black); otherwise, stay off (or white).” What happens next is every 

cell or bulb looks at its eight neighbors and then to the rule, and each cell or bulb 

simultaneously changes its state according to the rule and the states of its neighbors. In this 

way the CA’s we are investigating are discrete―they check and change their states all at 

once for each generation. An illustration helps to understand how our simple CA is 

functioning here (Figure 3). Additionally, http://conwaylife.com/ in a browser that supports 

java and the program Golly, which I have included on my disk, will allow us to see CA 

function dynamically. 

CA’s are essentially very simple computer programs. There is a set of rules, a 

board or grid on which the cells express states of off or on (or white or black), a set of 

inputs (which cells express which color at the start of running the CA―also called 

“seeding” the CA), and a set of outputs (the state of each cell each generation). While we 

describe CA’s as simple computer programs it must be noted that it is not necessary that 

we run these programs on a computer; indeed its entirely reasonable to use analog media to 

express CA, such as our gridded graph paper, or an array of light-bulbs in a grid, or a 

crowd of people with cardboard signs painted white on one side and black on the other. 

This notion is similar to the notion that a computer does not necessarily have to be built 

http://conwaylife.com/
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with electrical switches; it is quite conceivable that a computer could be constructed with 

fluid pressures, chemical reactions, or rubber bands and Tinker Toys as in Figure 3 (Hillis 

10-16). The computations in this hypothetical Tinker Toy computer would of course be 

much slower and prone to more error due to the possibility of the rubber bands or sticks 

wearing out, just as our hypothetical crowd of people expressing our CA with cardboard 

signs would be slow and more erroneous than a CA executed on a digital computer. 

In our sample CA in Figure 3 our rule was “turn black if the of the cells in your 

neighborhood are black, otherwise turn (or stay) white.” What other sort of rule-sets could 

we set up for our nine-celled neighborhood? We could have a rule-set that says, “if there is 

at least one black cell in your neighborhood, turn black,” or “if there are exactly two black 

cells in your neighborhood turn white.” The number of different rule sets for these type of 

nine cell neighborhood CA’s is astronomical. Mitchell sets the number of possible rules 

that include only two cell states (black and white) at 2 raised to the 512th power, a number 

“many times larger than the number of atoms in the universe” (148). One begins to 

understand the magnitude of possibilities that CA’s possess. 

So far we have been looking at 2D cellular automata. We call this 2D because they 

are laid out on a grid that has two axis. While we will look at one-dimensional and 2D-

dimensional CA later (CA’s that are expressed in a simple line and in cubic space, 

respectively), let us take a moment to unpack some of the other specific traits of our 

sample CA (Figure 4). We have understood that a cell looks to its adjacent 8 neighbors for 

information on what state to take when it updates each generation. But what about the cells 

that lie on the edges of the grid? These cells have only 3 or four neighbors. What we can 

do is either imagine an infinitely large grid, in which there are no edges, or think of our 

grid as continuous. If we use a continuous grid, then a neighborhood that begins on the top 
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of the grid completes itself on the bottom of the grid. A cell on the leftmost edge of our 

grid is part of a neighborhood that extends to the rightmost (Figure 4). Also it must be 

made clear that each cell is a member of several neighborhoods simultaneously. A center 

cell in one neighborhood is the upper left cell in an adjacent neighborhood. However each 

cell only checks its eight adjacent neighbors when determining its state for each 

generation. 

Now that we have a basic understanding of how CA function we can look very 

briefly at their historic development. Computer scientist and all around genius John von 

Neumann invented the notion of cellular automata in the late 1940's on a suggestion by the 

great genius polymath Stainslaw Ulam (Mitchell 149). Von Neumann is the man who 

introduced the world to cybernetics, and his work with CA was a result of his trying to 

model biological self-reproduction. While at first von Neumann was using 3D models 

based on factories and toy models, he later realized that two dimensions would be 

sufficient. Wolfram goes on to explain that von Nuemann originally constructed a CA with 

29 possible color combinations and very complicated rule-sets "specifically set up to 

emulate the operations of components of an electronic computer and various mechanical 

devices" (Wolfram 876). Von Nuemann described plans to create a 200,000 cell grid which 

would allow self-reproduction of various seed shapes (recall that “seeding” refers to the 

initial state of each cell in “generation 0” of a CA). The 1960's saw scientists and 

theoreticians describing CA with increasingly complex mathematical theorems, and using 

principles gleaned from these studies to pursue “whimsical” attempts at creating self- 

reproducing machines. In the 1950’s scientists recognized that many CA could be seen as 

parallel computers. Wolfram explains that by the 1970's interest in CA waned and became 

an increasingly "esoteric" domain (876-77). 
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However, in 1970 John H. Conway introduced his mathematical pass-time called 

The Game of Life, or Conway's Game of Life, or simply Life. This game used a simple 

binary system of black and white cells and a fairly simple rule set. Life gained quite a bit 

of popularity following its publishing in an October 1970 Scientific American article 

“Mathematical Games: The Fantastic Combinations of John Conway's New Solitaire Game 

‘Life’” by Martin Gardner. Conway was a very established and successful mathematician 

at the University of Cambridge working on various esoteric problems in group theory and 

number theory. But in addition to his serious work, the Scientific American article 

described Conway as often engaging in "recreational mathematics." 

Conway's Game of Life is a 2D discrete CA that uses the following rules. He 

likened a black cell as “alive” and a white cell as “dead.” 

1. If an alive cell has two or 2D alive neighboring cells, it stays alive. 
2. If a dead cell has exactly 2D alive neighboring cells, it comes to life. 
3. Otherwise, the cell will stay dead or die (Conway analogized a 
neighborhood with four or more alive cells killing its neighbors due to 
overpopulation, and a neighborhood with two or less cells killing its 
neighbors due to underpopulation). 

Like most 2D CA a cell’s neighborhood consists of the eight cells surrounding the center 

cell. Conway explained that he chose his rules carefully after much experimentation based 

on his following pre-conditions: 

1. There should be no initial pattern for which there is a simple proof that the 
population can grow without limit. 
2. There should be initial patterns that apparently do grow without limit. 
3. There should be simple initial patterns that grow and change for a 
considerable period of time before coming to end in 2D possible ways: fading 
away completely (from overcrowding or becoming to sparse), settling into a 
stable configuration that remains unchanged thereafter, or entering an 
oscillating phase in which they repeat an endless cycle of two or more periods 
(Gardner). 
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Gardner explains that Conway ran his early Game of Life by hand on a Go game board, 

using white and black Go discs as the CA’s cells. This was of course in the early 1970’s 

before the personal computer explosion; calculation of each generation was slow and had 

to be done methodically to avoid mistakes. Pagels characterizes Conway’s Life as “not 

really a game but an example of artificial life,” and specifically as a type of artificial life 

that only exists in computer simulations (103). However soon after the Scientific American 

article Conway’s Life become very popular among students and mathematically inclined 

professionals and hobbyists. The personal computer boom soon allowed Conway’s Life to 

be carried out on computer screens in garages and university basements around the 

country, and a whole generation of computer enthusiasts were influenced by the growing, 

buzzing, oscillating and burgeoning patterns on their screens (Rokicki Interview). 

Weinberg recalls how “dangerously addictive” Life was for physics graduate students in 

the 1970’s (1). In his 1988 text Pagels wonders about the limits of Conway’s life, 

suggesting how: 

Conceivably, if the area of interaction was large enough, rather than just a 
computer screen, this artificial life could go on forever, perhaps creating more 
and more complex forms. It is amazing to see how a handful of simple rules 
can generate such complexity. Likewise, it is impressive how the rules of 
atomic combinations in the real world can generate the complexity of living 
things―the real game of life (102). 

Twenty years later our technology has advanced enough to create a Life board where the 

area of interaction is a great deal larger in the software Golly. While the computer screen 

still delimits the space, our ability to zoom out at further and further levels of magnitude 

really shows how much complexity Conway’s Life can exhibit. Pagels’ comment that that 

“there is quite an inventory of life forms, and hackers are occasionally discovering new 

ones” shows the robustness of Life’s ability to serve as the setting for an ever increasing 
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amount of forms and patterns based on simple rules. There are now at least 600 distinct 

and interesting patterns on the Conway Life wiki http://conwaylife.com/. So far we have 

been looking at 2D CA, but as I mentioned before there are simpler CA that still generate 

complex and interesting patterns. If a 2D CA operates on a grid, a one-dimensional CA 

operates on a line; each cell’s neighborhood consists of those cells that lie directly on the 

right or left. The rule-set then consists of what color the cell was during its previous 

generation and what color its immediate left and right neighbors were there previous 

generation (Figure 5 shows a 2D rule set in graphic form, and figure 6 shows the first ten 

generations of a slightly different 2D CA). Wolfram says "Any program can at some level 

be thought of as consisting of a set of rules that specify what it should do at each step." 

One dimensional CA are very simple programs that can be seen graphically, although they 

don't really "do" anything beyond carrying out their programs from their initial inputs (23). 

The majority of Wolram's work in "A New Kind of Science" deals with simple one-

dimensional cellular automata. There are 256 such CA, and the first fifty or so generations 

of each of these are shown in Figures 7 and 8. The images in Figures 6-8 show what seem 

to be a 2D grid, but displaying the CA this way simply allows us to see many generations 

at once; to run and display each generation in only one line would make a visual analysis 

of these CA much more difficult. And in fact Wolfram stresses the important fact that 

much is gleaned from seeing the graphic output of these systems. It is the striking graphic 

and visual nature of these CA that leads Wolfram to most of his insights and boldest 

claims. Further, one notices that each of these CA begin with an input or seed of a single 

black cell. Any number of other inputs can serve as the first generation, but the single 

black cell is essentially the simplest input one can use. 

http://conwaylife.com/
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Most of these one-dimensional CA in figure 4 demonstrate fairly uninteresting 

behavior, while a smaller number show more interesting regular nested patterns. A smaller 

number of these CA show slightly more complex behavior; however it is rules 30 and 110 

that sparked Wolfram's two decade and 1200 page work. Rule 30 is shown in figure 9 

along with its rule-set. From seemingly very simple rules, and just one black seed cell, an 

enormous degree of complexity is produced. Conway's Life was shown to demonstrate a 

large degree of complexity from a deceivingly simple set of rules. While many seed shapes 

in Life peter out and "die," or settle into stable oscillations or "still- lives," many others 

produce unexpected, interesting, and to all appearances very complex behavior. The simple 

program of rule 30 produces just as complex behavior with arguably simpler preconditions. 

Wolfram does not limit his investigations to simple one-dimensional CA. He looks 

at a variety of other simple programs including substitution systems, simple fractal 

programs, register machines, numerical systems, systems that involve satisfying specified 

constraints, Turing machines, and 2 and 3D-dimensional CA (Figures 10, 1 and 12). He 

also looks at simple programs that seem to emulate or simulate natural systems such as 

snowflakes and seashell patterns (Figures 13 and 14). In all of these vast and different 

types of systems he demonstrates how very simple programs create very complex 

outcomes. 

Wolfram's project describes a new way of doing science. He argues that the 

computational universe―the space that exists only in computers―can be mined to solve 

problems that traditional science and mathematics are poorly equipped to solve. He 

reckons that when traditional science encounters a problem or system of particular 

complexity there must be equally complex reasons that give rise to such complexity. He 

states: 
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But my discovery that simple programs can produce great complexity makes 
it clear that this is not in fact correct. And indeed in the later parts of this book 
I will show that even remarkably simple programs seem to capture the 
essential mechanisms responsible for all sorts of important phenomena that in 
the past have always seemed far too complex to allow any simple explanation 
(4). 

Further he says: 

But on the basis of many discoveries I have been led to a still more sweeping 
conclusion, summarized in what I call the Principle of Computational 
Equivalence: that whenever one sees behavior that is not obviously 
simple―in essentially any system―it can be thought of as corresponding to a 
computation of equivalent sophistication. And this one very basic principle 
has a quite unprecedented array of implications for science and scientific 
thinking. 

For a start, it immediately gives a fundamental explanation for why simple 
programs can show behavior that seems to us complex. For like other 
processes our own processes of perception and analysis can be thought of as 
computations. But though we might have imagined that such computations 
would always be vastly more sophisticated than those performed by simple 
programs, the Principle of Computational Equivalence implies that they are 
not. And it is this equivalence between us as observers and the systems that 
we observe that makes the behavior of such systems seem to us complex (5-
6). 

This Principle of Computational Equivalence essentially understands the universe as a 

giant cellular automaton, or as a universal computation machine. The universe is a 

computer and all of its constituent parts emerge from simple programs. Mitchell provides a 

succinct gloss of this principle: 

1. The proper way to think about processes in nature is that they are 
computing. 
2. Since even very simple rules (or “programs”) such as Rule 110 can support 
universal computation, the ability to support universal computation is very 
common in nature. 
3. Universal computation is an upper limit on the complexity of computations 
in nature. That is, no natural system or process can produce behavior that is 
“noncomputable.” 4. The computations done by different processes in nature 
are almost always equivalent in sophistication (156-157). 
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Mitchell explains that Wolfram sees natural systems in the world constantly possessing 

and processing information just like rule 110 (157). 

Here we must take a moment to understand what computer scientists mean by 

“universal.” A Turing machine (developed by genius mathematician Alan Turing in the 

1930s) is a sort of conceptual device or mental program that very specifically describes 

what is and what is not able to be computed. Turing never actually built one of these 

machines except on paper, but they have been realized with hardware since then (Rokicki 

interview). Turing machines represent the simplest framework to carry out logical 

operations. A Turing machine is universal if it can compute any other arbitrary Turing 

machine. In this sense a Turing machine sets the upper limits of computation. Weinberg 

offers a succinct description: 

…the Turing machine was designed to capture the essence of mechanical 
logical methods. Just as a person going through a mathematical proof works 
with a string of symbols, focusing on just one at a time, the Turing machine 
works on a one- dimensional sequence of cells, each containing a symbol 
taken from some finite list, with only one “active” cell that can be read and 
possibly changed at each step. Also, to correspond to the fact that a person 
working out a proof would keep some memory of previous steps, Turing gave 
his machine a memory register, which can be in any one of a finite number of 
“conditions” (3). 

The only difference between a Turing machine and the personal computer I am typing this 

paper on and the multi-million dollar supercomputers run by governments and universities 

is the speed at which each runs. The other thing to point out about universal Turing 

machines is that if program can emulate a universal Turing machine, or any other machine 

that has been demonstrated to be universal, then that program is also universal. Wolfram’s 

conjecture that one of his simple 2D CA was capable of universal computation was proven 

in a 2002 essay by Matthew Cook, Wolfram’s research assistant (Cook 2002). Wolfram 

offers an example of the proof, which basically amounts to rule 110 being equivalent to 
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another type of already known universal system known as a tag system. Fifty years earlier 

von Neumann constructed his 2D CA with universality in mind explicitly (Wolfram 1117). 

It is not very obvious how rule 110 is “computing” anything; however, Wolfram 

provides some simpler CA that are clearly doing some sort of computation (Figure 15). For 

example elementary rule 132, the top image in Figure 15, can be seen as computing if a 

given number is even or odd (638). For no matter how many cells one starts with, a 

singular black cell repeating indefinitely down the same column will remain if the number 

is odd, and no cells will remain or repeat if the number is even. A slightly more complex 

cellular automaton, the second image in Figure 15, is seen to compute the square of any 

given number (639). In the last image in Figure 15, one can see elementary rules 94, 62, 

190 and 129 as computing even numbers, multiples of 3, multiples of 4 and powers of 2, 

respectively. Figure 16 shows a more powerful CA computing prime numbers (640). These 

examples of simple programs computing various numerical propositions are not at first 

obvious; we normally do not think of how computer programs operate, and these are quite 

unusual. However, from these simple programs one can imagine much more complex 

programs being built. 

This idea of universality is more easily understood by taking a quick look at some 

meta-cellular automata. Golly has several very powerful examples of these meta- programs 

(Figure 17), and Wolfram also provides an example (Figures 18-20). The idea of a meta-

CA is that while its particular rule-set remains constant, by applying specific inputs, the 

meta-CA can emulate a large number of other normal CAs. This idea of emulation is also 

related to the idea of translation, and in particular the notion of translating the inputs and 

outputs from one type of program into equivalent input and outputs of another type of 

program. Dr. Rokicki says, “The idea of a meta-program though is loosely related to a 
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Turing machine's ability to simulate an arbitrary Turing machine (which is a fundamental 

result in computer science and another amazing one)” (Rokicki Interview). Here is one 

instance where my superficial understanding of the mathematics behind these types of 

programs does not allow for deeper explanation. 

Clearly the rule set in Figure 20 is much more complicated than what we have seen 

with the simple 2D CA. While a denser description might be possible I believe that images 

of these meta-programs really reveal how amazing these programs are better than a 

discursive explanation might. 

What, exactly, do we mean when we say that a system is “complex?” Mitchell 

quotes a 2001 paper by physicist Seth Lloyd that offers the following questions to keep in 

mind while judging a system or object’s complexity: “How hard is it to describe? How 

hard is it to create? What is its degree of organization?” (96). In that same paper Lloyd 

gives about forty historical examples of how thinkers have theorized complexity; I will 

briefly gloss over three. The first theory asks how deep is a system’s algorithmic 

information content. In this conception of complexity something is complex based on the 

length of the shortest possible algorithm that can explain or account for that thing. This 

conception is useful for some things, such as the relationship of a circle’s diameter to its 

area, but less useful for other things, such as tables or people (Mitchell 98, Hillis 100). 

Hillis nicely describes the shortcomings of this type of conception of complexity 

when he is theorizing about the human brain. He says, “it is possible that a satisfactory 

description of what the brain does will be almost as complex as a description of the 

structure of the brain―in which case, there is no meaningful sense in which we can 

understand it” (141). In other words an algorithm cannot compress some things; the system 

can be understood only by observing it unfold. To put it another way, when we attempt to 
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express the informational content of some things (like the brain possibly) through an 

algorithm, what we end up with is an algorithm as long or longer than the informational 

content itself. 

The second conception of complexity is concerned with a system’s “fractional” 

dimension. For example the coastline of Britain, the curves in Figure 1, and other nested, 

rough, and self-similar shapes can be described using fractal mathematics. However 

surfaces and objects that have either extreme regularity such as the Platonic solids, or 

extreme randomness at various magnification, not mentioning systems such as humans and 

cultures, really fail to be described by the fractional conception of complexity (Mitchell 

103). 

Finally one might understand complexity as a degree of hierarchy. This idea 

supposes that a system’s complexity is a function of the degree of subsystems that make up 

the attendant super-system. Mitchell paraphrases Herbert Simon’s 1962 paper “The 

Architecture of Complexity,” when she explains that “the most important common 

attributes of complex systems are hierarchy and near-decomposability.” Hierarchy in the 

body runs from organism to organs, tissues, cells, etc. Near-decomposability is the notion 

that “there are many more strong interactions within a subsystem than between 

subsystems. As an example, each cell in a living organism has a metabolic network that 

consists of a huge number of interactions among substrates, many more than take place 

between two different cells” (Mitchell 109-110). This conception of complexity seems to 

deal with natural and cultural systems more readily than the algorithmic or fractional 

conceptions, and perhaps with our meta-programs discussed above. However its not clear 

how a system such as a 1D CA that Wolfram describes might be broken down into 

hierarchal elements. 
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Wolfram has a rather less erudite conception of complexity. He contends that “just 

as one does not need a formal definition of life in order to study biology, so also it has not 

turned out to be necessary so far in this book to have a formal definition of complexity.” 

However he does provide a working definition; he explains that, in “everyday language,” 

what we mean when we say something is complex is that we have failed to find a simple 

description of the thing or its salient features that interest us (557). For an image that one 

would consider basically “random,” white noise on a television set for example, any other 

example of white noise on the television could be substituted for any other without losing 

any salient features of the randomness. One would simply say, “It looks random.” 

Wolfram says: 

If we can find no simple features whatsoever—as in the case of perfect 
randomness—then we tend to lose interest. But somehow the images that 
draw us in the most—and typically that we find most aesthetically pleasing—
are those for which some features are simple for us to describe, but others 
have no short description that can be found by any of our standard processes 
of visual perception (559). 

His grand point, again, is that it is quite surprising to realize that very complex 

images can be produced by very simple rules. Whether this point is a novel discovery or if 

he has just found a new vocabulary to state what artists and scientists have known for quite 

some time is not clear. 

Wolfram sees his work with simple programs having profound impacts on 

mathematics, physics, biology, social sciences, computer science, philosophy, art and 

technology. Wolframs bold and broad claims, along with his rather solipsistic tone, 

disregard for traditional peer review and neglect of many of his predecessors and peers 

working in very similar veins has garnered him quite a bit of criticism. 
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Cosma Shalizi, for example, characterizes Wolfram’s A New Kind of Science as “A 

rare blend of monster raving egomania and utter batshit insanity.” Shalizi explains how 

following his publication of a paper on CA he was threatened with a lawsuit from lawyers 

of Wolfram Research Inc. “because one of our citations referred to a certain mathematical 

proof, and they claimed the existence of this proof was a trade secret of Wolfram 

Research” (132). Shalizi points other several other instances of Wolfram either blatantly 

disregarding the past work of others or aggressively protecting “his” discoveries through 

litigation. Further Shalizi points out that the search for simple, unifying laws that account 

for the many complexities in the world has basically been the aim of science “since at least 

Galileo and Newton” (136). While Shalizi makes great effort to point out Wolfram’s lack 

of professional and scientific candor (in addition to facets of A New Kind of Science he 

finds simply incorrect), the formers judgment might be clouded by personal misgivings. 

However, Wolfram’s idea that the universe essentially is a computer, contradistinguished 

from the notion that the universe is like a computer, was noted by the scientist Fredkin 

since at least the early 1980’s (Wright 29). 

Other critics find fault in Wolfram’s Principle of Computational Equivalence for 

different reasons. Weinberg thinks Wolfram is guilty of confusing the model for the object 

being modeled. For example Wolfram produces a series of CA that, after a few hundred 

generations, produce systems that look like snowflakes (Figure 13). However, Weinberg 

says that real snowflakes contain a “thousand billion billion water molecules,” and 

Wolfram does not produce a CA that accounts for anywhere near this amount of 

complexity. Weinberg says, “If Wolfram knows what pattern his cellular automaton would 

produce if it ran long enough to add that many water molecules, he does not say so” (1). 
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This critique comes down to the notion that while CA might look like natural processes, 

Wolfram has not shown that CA are in fact responsible for natural processes. 

Mitchell takes a less hostile tone toward Wolfram. She agrees that simple computer 

modeling and experiments are very useful for conceptualizing natural processes and in 

general benefit scientific progress. However, she cannot make the leap that all 

computational processes are equivalent; that is, she cannot see how the computations in her 

own brain and the computations in a worm’s brain are both not only constrained by the 

universal limits of computation but are also equivalent in sophistication (158). Further, she 

takes issue with Wolfram’s very bold speculation that “there is a single, simple cellular 

automaton-like rule that is the ‘definite ultimate model for the universe,’ the primordial 

cellular automaton whose computations are the source for everything that exists” (158). 

Indeed this is a very strange conception of the universe. Looking at some of the patterns in 

Life and in rule 110, I am struck by what appears as a cold, calculated determinism; these 

are worlds that posit a narrowly defined gridded space of existence that while allowing for 

extreme novelty and emergence of pattern and growth, seem like a sadly constrained and 

limited domain for human expression and ultimate existence. 

Fortunately not all thinkers and mathematicians allow these types of simple 

programs to shape their world-view so dramatically. For example Will Wright, the creator 

of SimCity, recognizes CA’s as a way of seeing emergence in the world. He has used these 

simple programs to create some of the world’s most popular simulation games. In a 

discussion with musician Brian Eno (who uses simple programs to create emergent works 

of music) Wright explains how SimCity is essentially just a CA dressed up with visually 

appealing graphics. He explains that shortly after he created SimCity emergent properties 

began to appear that mirrored real cities, such as fluctuating property values affecting 
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gentrification. However, Wright understands that the simulation should only be taken so 

far; the programmer was asked if he knew that real city planners were attempting (with 

varying degrees of success) to model and plan their real cities using SimCity. Wright 

warned that his toy model might be useful for visualizing the physical interaction of a city, 

but that real life problems of urban blight, gentrification and transportation were much 

more complicated than his game (Wright Interview). 

I also encountered a refreshingly less obsessive and paranoid understanding of CA 

in my interview with Golly programmer Dr. Tom Rokicki. After establishing that we both 

enjoyed Conway’s Life simply for its unexpected and emergent patterns, I asked Dr. 

Rokicki what some of the “practical” uses of CA were. I told him that while I was satisfied 

with just watching Conway’s Life and the meta-programs unfold for their own sake, that 

many of my peers pressed me with the questions “Well, the moving cells are certainly 

interesting, but what are they used for? What purposes do they serve?” Dr. 

Rokicki replied: 

Well, when you geek out, your geek friends will understand, and your non-
geek friends will just wonder what's wrong with you. Nothing surprising 
there. It's called recreational math for a reason. Knowledge has value of its 
own. But I don't ever try to justify; if they don't get it, they don't get it, and 
they can continue killing each other on their shoot-em-up simulations all they 
want…. If you want a practical application, I think the easiest one is that 
recreational math is the siren call of engineering and mathematics; it is the 
cool stuff, the puzzles, that young children or young adults play with and get 
sufficiently interested in to start exploring math or programming. 

I will reveal here that after a couple months of studying CA and specifically the type of 

systems in Wolframs A New Kind of Science, I had really started obsessing over some of 

the more far out conclusions in that book. I was seeing determinism and local 

neighborhoods affecting emergent behavior everywhere I looked. Scientists like Wolfram 

and Fredkin draw very profound metaphysical conclusions from their work with CA, but 
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Dr. Rokicki seemed far more grounded. He described himself as a “graybeard” that had 

really gotten sucked into recreational mathematics in the 1970s as a direct result of 

Conway’s Life. He told me, “Even now I have such a compelling interest in what happens 

in a Life pattern as it runs.” Dr. Rokicki’s interest in mathematical recreation does not end 

with Conway’s Life and Golly; he was on a team of mathematicians that recently proved 

that the least number of steps to satisfy any configuration of a Rubik’s Cube is 20. He 

expresses the same affinities for science and play that are exhibited in Hoberman’s Sphere. 

In the same vein, Steven Johnson discusses a piece of software called StarLogo that 

was developed for children and high-schoolers. StarLogo is a type of simulation software 

that demonstrates the emergence of pattern and order from various random initial 

conditions; small CA like blips of green and red represent slime mold bacteria, turtles, 

food, and various chemical communicators. It’s school age users get to watch the blips 

live, eat, breed, move and die (76, 163-69). There is a real strong link between CA, 

simulation, and learning. 

While working on this research project I really discovered a large number of 

interrelated threads. Chaos theory gave way to complexity science. These two sciences 

essentially co-evolved along with the computer in the 20th century. Therefore I was lead to 

try and understand some of the basic functions of computers. Driving all of this research 

was the graphic output of these programs. I have already felt the effects of looking at these 

types of programs in my own work, both in having a new vocabulary to understand my 

drawings and having new strategies to create them. If New Visual Studies, as an emergent 

discipline, lies somewhere at the intersection among science, psychology, optics, graphic 

technologies, art histories and art production, I believe a close study of cellular automata 
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and its attendant theories provides a fantastic intellectual space to apply this type of new 

study.  
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Cellular Automata
Simple Rules Generate Complex Results



Cellular Automata

John Von Neumann

John Horton Conway Stephen Wolfram



A cell’s neighborhood is 
defined by the eight 
closest adjacent cells, 
including cells that touch 
with one side or with 
one corner.

Cellular Automata



A simple set of rules is created, determining how 
each generation of the automata is generated.  
The first generation is arbitralirily seeded with a 
number of black cells. 

Cells can only be black or white (on/off, 
alive/dead) in these simplest automata.  

The rules state whether a cell turns white, turns 
black, or remains the same.

Each cell checks its neighbors and its own state 
at the same time, then adjusts its color for the 
next generation.  All cells change colors 
concurrently, one generation at a time.  

For example our rule set could be “turn black if 
the majority of cells in your neighborhood are 
black, otherwise turn white.”

A ridiculously large number of possible rule sets 
exist for this type of 2-dimensional cellular 
automata (2512, or 1.3 x 10154).       

Cellular Automata



Cellular Automata

In theory the grid is extended 
infinitely.  For most of our 
purposes we can simply use 
an arbitrarily large grid. 

If space doesn’t allow for an 
infinite grid, we can have the 
grid be “circular.”

A 3x3 neighborhood starting 
on the left edge of the grid 
finishes on the right side of 
the grid.  A neighborhood 
starting on the top of the grid 
extends to the bottom.        



A simple set of rules is created, determining how 
each generation of the automata is generated.  
The first generation is arbitrarily seeded with a 
number of black cells. 

Cells can only be black or white (on/off, 
alive/dead) in these simplest automata.  

The rules state whether a cell turns white, turns 
black, or remains the same.

Each cell checks its neighbors and its own state 
at the same time, then adjusts its color for the 
next generation.  All cells change colors 
concurrently, one generation at a time.  

For example our rule set could be “turn black if 
the majority of cells in your neighborhood are 
black, otherwise turn white.”

A ridiculously large number of possible rule sets 
exist for this type of 2-dimensional cellular 
automata (2512, or 1.3 x 10154).       

Cellular Automata

Two generations of a cellular automata with the rule 
being “take on whichever state is a majority in my 
local neighborhood.” The first state was arbitrarily 
chosen.



Conway’s Game of Life

Conway’s Game of Life Rules:

• If an alive cell has two or three alive neighboring cells, it stays alive (turns black).

• If a dead cell (white) has exactly three alive neighboring cells, it comes to life.

• Otherwise, the cell will stay dead or die (analogous to over or under population).

Conway originally worked out this game on a Go board, methodically updating each generation while 

checking for errors.   
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Conway’s Game of Life Rules:
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• If a dead cell (white) has exactly three alive neighboring cells, it comes to life.

• Otherwise, the cell will stay dead or die (analogous to over or under population).



Conway’s Game of Life

Conway’s Game of Life Rules:

• If an alive cell has two or three alive neighboring cells, it stays alive (turns black).

• If a dead cell (white) has exactly three alive neighboring cells, it comes to life.

• Otherwise, the cell will stay dead or die (analogous to over or under population).

Block

Beehive

Loaf

Boat

Beacon

Blinker

Toad



Conway’s Game of Life

Conway’s Game of Life Rules:

• If an alive cell has two or three alive neighboring cells, it stays alive (turns black).

• If a dead cell (white) has exactly three alive neighboring cells, it comes to life.

• Otherwise, the cell will stay dead or die (analogous to over or under population).

Conway believed that there would be no initial arrangements of cells that would lead to 

unrestrained growth and offered a $50 prize to anyone who could demonstrate such an arrangement. The 

“Gosper Glider Gun” took the prize that same year.

It turns out there are many arrangements of cells that offer unrestrained growth, complex period oscillations (blinkers), and “methuselahs”
that generate complex patterns but then die out or settle into fixed states of no change.   



One Dimensional Elementary Automata

The possibilities for two dimensional automata are virtually without end, especially if one begins to add additional states. 
For example one could have several different colors instead of black and white.  However, we can also look at even simpler 
cellular automata that have just one dimension.   



One Dimensional Elementary Automata











Two-Dimensional Cellular Automata Projected in Three Dimensions



Three-Dimensional 
Cellular Automata



Three-Dimensional 
Cellular Automata



Simple Computations



A slightly more complex computation



One Dimensional

Universal Cellular 

Automata



One Dimensional

Universal Cellular 

Automata



Universal Cellular 

Automata



Universal Cellular 

Automata



Wolfram Investigates Other Simple Systems



Wolfram Investigates Other Simple Systems



Wolfram Investigates Other Simple Systems





Computational Universality

Turing Machines!

These are a type of mental construct developed by Alan Turing in the 1930’s.  They describe how computation functions, 
including the top and bottom limits of computation.  They limit what is computationaly possible. A computer is “universal” if it can 
Emulate a Universal Turing Machine.    



Computational Universality
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Simulation & Emulation



Simulation & Emulation
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