To:	Academic Program Review Council
From:	Ferris State University
CC:	[Recipient names]
Date:	9/4/2013
Re:	CAD Drafting and Tool Design Technology Program Update to address program concerns from APR recommendations

The CAD Drafting and Tool Design program has made several changes within the program to address the concerns of the APRC. The first item that needs to be addressed is that the program has been at and actually over capacity for the past four years given the current resources of two faculty members and a maximum lab capacity of 22 students for the first year students.

The current students and graduates have easily found employment both for summer experiences and full time employment. At the time of the last APR the manufacturing arena had taken a downturn and that had a very small impact on our graduates. Our students are continually being sought after for fulltime employment and by programs that our students transfer into for a four year degree.

We have also worked very hard to advocate with our Dean's office that our computers are our lab equipment and are more than essential to the program. We were fortunate to get one of our two labs upgraded last year to have computer equipment that works well with our software programs. We would still like to see the second lab receive a similar upgrade and a process in place for routine computer replacement.

Another item of importance to add is that our students as of the past two years do recommend our program to others as can be observed by our internal transfers into the program. A significant reason why some of the four year programs that formerly received our students have been affected is that we cannot accept any more into the program given the current constraints and we also need better marketing support to high school programs to share program information.

The CDTD program is really a true 2+2 program that provides our students with a variety of options to enter the field where they find their niche. Being that everything starts with design our students throughout their two years in the program gain exposure to a variety of different careers centered around the manufacturing of products. The vast majority of our students transfer into Product Design Engineering Technology, Manufacturing Engineering Technology, and Plastics Engineering Technology. We also have students enter into the Mechanical Engineering Technology program and Career Technical Education program in the College of Education and Human Services. The faculty in the program has worked with each of these departments to develop transfer plans so that there is a seamless entry into the programs. CDTD is perfectly aligned with Plastics Engineering Technology, Manufacturing Engineering Technology, Product Design Engineering Technology, Mechanical Engineering Technology, and Career and Technical Education. Each of the programs that we feed into within the CET actively recruit our graduate as can be observed by the number of recent transfers into the four year degrees. Each of the program faculty from these programs has shared their satisfaction of the student that they receive and how that student gets unique internships and job offers due to their combination of design with the manufacturing degree.

In addition to the above changes that have been made the program conducted a DACUM analysis last year to determine if the program was aligning with the industry needs. The analysis showed that the CDTD program was meeting the needs for entry level tool designers. The analysis also showed that there is room for further development of degree offerings to add on to the current four year degree offerings. There continues to be a significant shortage of graduates with the experience that the industry requires and we are one of the only schools that provides the level of education and experience that is currently needed.

If the committee has any questions please do not hesitate to contact me and I would be happy to meet to discuss the CDTD program and what the two faculty members have been able to do to advance the program and the Ferris mission.

Sincerely,

Dan Wanink

ų – *

	Core
A	Solid Modeling
В	Engineering Drawings
С	Basic Machining
D	Introduction to die design
E	Introduction to mold design
F	Introduction to machine design
G	Introduction to GD&T and tolerance analysis
н	Introduction to material science
-	Introduction to jig and fixtures design
J	Business Communication
	ElectiveTool Designer
К	Advanced die design
L	Advanced machine design
M	Advanced mold design
	ElectiveProduct Designer
N	Design for Manufacturing
0	Advanced 3D modeling

.

a.

Panel was asked to identify tasks they want graduates to be able to perform

Core Required

A		L SAU	Solid Modeling
	1		Analyze CAD drawing data
	2	1	Create 3D models
	3		Locate parts in space with correct orientation and datum scheme
	4		Effectively and efficiently model the part with appropriate features (no dirty modeling)
	5	-	Create a parametric model
	6	-	Create functional assemblies
	-	a	dynamic constraints
		b	appropriate assembly sequence
	7		Integrate third party content into models (downloadable)
	8		Analyze model for interferences
	9		Export to various file formats, such as
		a	step
	<u> </u>	b	iges
	<u> </u>	c	prt
		d	parasolid
		e	st
		f	catpart
		g	edrawing
		h	3D
	1	i	pdf
В	0		Engineering Drawings
			Apply general drafting standards for preparation and presentation including selecting appropriate paper
	10		size, etc.
	11		Create orthographic projections, such as
		a	section views
		b	detail views
		c	auxiliary views
		d	brokwn views
	12		Apply all dimensioning styles and types, such as
		а	ordinates
		b	functional
		c	tolerances
	13		Edit CAD drawing/model (apply and track engineering changes)
	14		Create assembly drawings, such as
		a	exploded views
		b	ballooning
	1	с	BOM
	15		Draw threads and fasteners
	16		Measure and apply measurements to drawings
	17		Interpret and apply weld symbols
	18		Call out standard notes and surface finishes, as appropriate
	19		Apply standardized filing structure
	20		Export to various file formats, such as
		a	dwg
		b	dxf
		c	iges
		d	pdg
		-	

*

.

Panel was asked to identify tasks they want graduates to be able to perform

C		<u></u>	Basic Machining	
	21		Comply with safety procedures and processes	
	22		Identify different machining equipment	
	23		Operate lathe	
	24	30	Operate vertical mill	
	25		Operate grinders, such as	
		a	surface	
		b	pedestal	
	2.0	c	air	
	26		Operate precision measuring equipment including	
2000-0		a	micrometers	
	r	h	caliners	
	-	c	height gages	
	27		Use appropriate vocabulary for machining	
	28		Operate common hand tools, such as	
<u> </u>		a	hammers	
		h	werenches	
		0	vise	
		ă	files	
	20		Perform tanning and threading operations	
-	30		Identify function and operation of various machining processes such as	
	- 30	-	FDM	
		a b	CNC	
	21	0	Calculate feede and encede	
	27		Draw and machine a part	
	32			
D	5-5-7		Introduction to die decign	
	22	1	Describe components of a die and types of dies, such as	
			etationary	
-		a b	nranessive	
		0	transfar	
d deen draw		deen draw		
	34 Describe operation of die		Describe operation of die	
-	25		Model a stationary die	
	35		Model a progressive die with CAM	
	27		Perform fundamental tool design calculations, such as	
	37		ners tomage	
		a L	tolerance between die and nunch	
 .		0	hend make	
		C C		
2	2010/00	1000		
F			Introduction to mold decim	
Ľ	20		Describe components of a mold including various trace of molds, such as	
	38		bescribe components of a more mending various types of mores, such as	
		L	Compression	
		0	inication	
<u>,</u>		C I	hjecuon	
		a		
		e		
	39		Model - model with understand - the estimate	
	40	-	product a moto with undercut tooling actions	
	41		remora indiamental tool design calculations, such as	
		a	press tonnage	
b plastic shrinkage				
	c cooling sizing			
d gate				
1				

Panel was asked	to identify tasks they	want graduates to	be able to perform
and the second sec	the second se		

F			Introduction to machine design
	42		Demonstrate skills in problem solving, diagnostics, and troubleshooting
	43		Identify mechanical drives and mechanisms
	44		Identify function of pneumatic and hydraulic slide/cylinders
		1	
	45		Identify function, components and operation of basic machines in manufacturing environment, such as
		a	dial machines
	1	b	assembly lines
		c	stand alone cells
		d	Robotic cells
	46		Identify advantages and disadvantages and common applications of rotational drive systems, such as
		а	gear
		b	belt
		c	pulley
	47		Identify advantages and disadvantages and common applications of linear drive systems, such as
		a	pneumatic actuators
		b	servo
		c	ball screw
		d	hydraulic
	48		Identify types and common applications of control systems, such as
		a	switches
		ь	pneumatic/hydraulic valves
		c	PLC's
		d	HMI's
_		e	light curtains
		f	paim buttons
	<u> </u>	g	satety switches
	<u> </u>	h .	opto touch senses
		<u> </u>	safety gales
	49		Indentity types of basic machine mames/structure and designs, such as
	<u> </u>	8	overliead
		0	C. frames
			cantilever hearts
_	50	u .	Design a simple machine such as
	30	-	"nick and place"
	<u> </u>	a h	più slide
		C	robotic end effector
	51		Integrate ergonomic and safety principles into design
	52		Design a sheet metal project
200			
G	200 300	1	Introduction to GD&T and tolerance analysis
a desta de	53		Isolate six degrees of freedom using the datum system
	54		Identify 14 geometric characteristics and 15 modifying symbols
	55		Apply specific geometric characteristics correctly for a specific application
	56		Identify and interpret common GD&T symbols
	57		Establish datum scheme in all primary, secondary, and third schemes
	58		Create a feature control frame
	59		Use appropriate terminology for GD&T
	60		Identify tolerances zones and tolerance modifiers
	61		Differentiate between ISO and ASME Y14.5 standards
	62		Apply 14 symbols of GD&T in multiple applications
	63		Perform tolerance stackups between multiple components, such as
		a	root sum squared
		b	max/min
11 - C	64		Design a fixture or take fixture designed earlier in program to add GD& I

÷

Panel was asked to identify tasks they want graduates to be able to perform

H	1.00		Introduction to material science					
	65		Identify material properties for plastics, metals, and composites					
	66		Identify common manufacturing processes for each type of material					
	67		Identify test methods for specific materials					
	68		Perform specific tests on different materials, such as					
		a	heat treating					
		b	tensile strength					
		c	hardness					
_		d	ferrous/non-ferrous					
	69		Identify common surface treatments and coatings for common materials					
	70		Identify common corrosion resistance materials and applications					
2	71		Interpret stress strain curve					
	72		Select appropriate materials based on application					
I			Introduction to jig and fixtures design					
	73		Differentiate between jigs and fixtures					
	74		Identify methods and components of clamping mechanisms, locating features, etc.					
	75		Design a simple jig					
	76		Design a simple part-holding fixture					
	77		Apply GD&T to the design					
	78		Integrate ergonomic and safety principles into design					
J			Business Communication					
	79		Set up or participate in teleconference tools such as online meeting tools					
	80		Sketch a design					
	81		Make a professional presentation of a design including project plan and cycle times					
	82		Compose professional communications with clients and colleagues, such as					
		a	emails					
		b	meetings					
		c	meetings					
		d	webinars					
	83		Complete engineering changes					
	84		Develop a project plan (using computerized project management tools)					
	85		Compose a corrective action for a problem with a design					
	86		Complete a job interview with a group of professionals					
	87		Gather design criteria/materials to create a design brief or engineering proposal, such as					
		a	design specifications					
		b						
		C .	test specifications					
_		d	target costing					
		e	project unrenne					
	88	-	Learning and apply manufacturing process management techniques, such as					
		a 1	Icali					
		D						
		c .						
		d	Jo wate (muda)					
		e						
	—	<u>F</u>	V Sivi					
		<u>g</u>	Induced work					
	00		Describe cultural differences in major manufacturing ereas of the world (European Asia India)					
	69		A note current and anterences in major manatacturing areas of the workd (European, Asia, India)					
	90		Arphy principles of world class operations (mousely quality standard operation)					

-

E

.....

.

Panel was asked to identify tasks they want graduates to be able to perform

Electives--Tool Designer

K	1		Advanced die design
_	91		Design multi-stage, progressive dies
	92		Perform advances calculations, including forces, bend radius, tonnage, material thickness, etc.
	93		Incorporate various die/press components including stock feeders, part strippers, part holders, etc.
	94		Handle scrap in the design and calculate scrap costs
95			Identify advanced die shop setup to include advantaged material handling, SMED, etc.
	96		Design safety measures into a design, such as
		a	guarding
		b	hand presses
		с	switches
L			Advanced machine design
	97		Design vacuum holding device
	98		Calculate pneumatic/hydraulic cylinder size for load
	99		Size a gear or belt drive for a given load
	100		Incorporate specific sensing devices into a design and types of PNP and NPN sensors, such as
		a	prox
		b	limit
		С	hall effect
		d	vacuum
		e	photoelectric
		ſ	pressure transducers
		g	thermocouples
		h	load cells
	101		Incorporate piping and wire routings into a design
	102		Identify appropriate clearances in a design, such as
		a	human reach
		b	swing motion
		C	tool access
	103		Identify pneumatic/hydraulic controls (especially types of valves, etc.)
	104		Incorporate robots into design (types of six axis, five axis, etc.)
	105		Complete a robot motion study using the 3D software or a simulator
			Design a more sophisticated station or machine (e.g., dial machine with two stations, etc.) including
892 B	106		maintenance components
	107		Perform a risk analysis

20 N

Panel was asked to identify tasks they want graduates to be able to perform

M	-		Advanced mold design
	108		Identify mold components and actions (e.g., hydraulic, basic concept of how it works)
	109		Assemble and disassemble a mold
	110		Design a more complex mold, such as
		a	complex ejector slides
		b	different types and location of gates
		С	cooling
		d	CAE course
		e	structural ribs
		f	flow of plastics
		g	multi-cavity
		h	ejection practices
		i	venting
		j	insert brass inserts
		k	over molding
	111		Incorporate cooling and manual actions into mold design
	112		Design a complex parting line runout
	113		Design a manifold injection system
	114		Design advanced steel type and plastic type mold features such as mold inserts (for cooling, grilling, etc.)
	115		Calculate cycle time including
		a	pack
		b	hold
		с	cooling

100

.

Panel was asked to identify tasks they want graduates to be able to perform

Electives--Product Designer

116		Identify manufacturing processes, such as					
	a	costs					
	b	number of steps					
	С	tooling/manufacturing accessibility					
	d	assembly					
117		Apply tolerancing					
118		Design for assembly					
119		Design ergonomics into a design					
120		Design poke-a-yoke into the design					
121		Design locating schemes between mating parts					
122		Analyze interactions of dissimilar materials (e.g., corrosion hazard, friction, etc.)					
123		Streamline components to optimize manufacturing					
124		Use a physical prototype to test design					
125		From a concept sketch or design, design a product					
126		Design for environmental issues and concerns					
127		Analyze for costs, shapes, annual volume, etc.					
128		Design for total product lifecycle (including disassembly for rework and recycling)					
129		Design a consumer product and analyze results					
130		Select appropriate materials for design/process					
and the second	91.m.co	Advanced 2D modeling					
the second second		LAGANGED DD MODELINE					
131		Design for advanced assemblies (including motion studies, dynamic constraints, etc.)					
131 132		Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch)					
131 132 133		Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts					
131 132 133 134		Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes					
131 132 133 134	a	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting					
131 132 133 134	a	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture					
131 132 133 134	a b c	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish					
131 132 133 134	a b c d	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color					
131 132 133 134	a b c d	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment					
131 132 133 134	a b c d e	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate					
131 132 133 134 134	a b c d e	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate loft					
131 132 133 134	a b c d e a b	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate loft sweeps					
131 132 133 134	a b c d e a b c	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate loft sweeps intersect					
131 132 133 134 134	a b c d e a b c d d	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate loft sweeps intersect ribbing					
131 132 133 134 134	a b c d e a b c d c d c d e	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate loft sweeps intersect ribbing pro-E piping					
131 132 133 134 134	a b c d e a b c d c f	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate loft sweeps intersect ribbing pro-E piping thin features					
131 132 133 134 134	a b c d e a b c d c f g	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate loft sweeps intersect ribbing pro-E piping thin features helical sweeps (helically cut a thread using correct pitch and major/minor diameters)					
131 132 133 134 134	a b c d e a b c d d e f f	Design for advanced assemblies (including motion studies, dynamic constraints, etc.) Create complex surfaces (interpret form from a drawing or sketch) Create table-driven assemblies or parts Create a rendering of a product that includes lighting texture surface finish color in an appropriate environment Design more complex parts that incorporate loft sweeps intersect ribbing pro-E piping thin features helical sweeps (helically cut a thread using correct pitch and major/minor diameters) springs					
	117 118 119 120 121 122 123 124 125 126 127 128 129 130	b c d 117 118 119 120 121 122 123 124 125 126 127 128 129 130					

	Core	Total Credits	Lecture Hours	Lab Hours	Lecture Credits (based on 15 clock hours = 1 credit)	Lab Credits (based on 30 clock hours = 1 credit)
Α	Solid Modeling	6	30	120	2	4
В	Engineering Drawings	3	15	60	1	2
С	Basic Machining	4	15	90	1	3
D	Introduction to die design	3	30	30	2	1
E	Introduction to mold design	3	30	30	2	1
F	Introduction to machine design	3	30	30	2	1
G	Introduction to GD&T and tolerance analysis	3	45	0	3	0
Н	Introduction to material science	4	30	60	2	2
1	Introduction to jig and fixtures design	3	30	30	2	1
J	Business Communication	3	45	0	3	0
	ElectiveTool Designer	Total Credits	Lecture Hours	Lab Hours	Lecture Credits	Lab Credits
К	Advanced die design	4	15	90	1	3
L	Advanced machine design	4	15	90	1	3
М	Advanced mold design	4	15	90	1	3
	ElectiveProduct Designer	Total Credits	Lecture Hours	Lab Hours	Lecture Credits	Lab Credits
N	Design for Manufacturing	4	60		4	0
0	Advanced 3D modeling	6	30	120	2	4
	Core Total	35	300	450	20	15
	Tool Designer Electives Totals	12	45	270	3	9
	Product Designer Electives Totals	10	90	120	6	4

JOB ANALYSIS PERFORMED FOR:	Ferris State University College of Engineering CEEMS CAD Drafting & Tool D	Fechnology Pesign Technology
DEGREE PROPRAM ANALYZED:	AAS CAD Drafting & T	Sool Design Technology
PERFORMED BY:	Dr. Katherine (Kitty) Ma Ferris State University School of Education 416A Bishop Hall Big Rapids, MI 49307 231-591-2727 e-mail: manleyk@ferris	anley, Professor .edu
REVIEW PANEL:	Sikonia, Bob Schulte, Robert Tomlinson, Mark Lavender, Erin Masko, Ray Goodenough, Dave Kyle Magneson Perry Betterley	Extreme Tool & Engineering, Inc. Hi-Tech Mold SME B & P Manufacturing Superior Concepts Edgewater Automation Stryker Global Quality & Operations Kalamazoo Campus Operations
REVIEW DATES:	3/21/20	13

. . . .

Ferris State University's Manufacturing Technology Associates Degree Related Occupations

Ferris State University's

Manufacturing Technology Associates Degree

Continuing Education Options & Related Occupations

Additional course(s) may be required.

MEMORANDUM

DATE:	17 November 2009
TO:	Academic Senate
FROM:	Academic Program Review Council
SUBJECT:	Recommendations for A.A.S. in CAD Drafting and Tool Design
CC:	Todd Rose, Rich Goosen, Tom Oldfield, Donald Flickinger, Roberta Teahen, Fritz
	Erickson

I. IDENTITY OF PROGRAM:

A.A.S. in CAD Drafting and Tool Design

II. RECOMMENDATION OF ACADEMIC PROGRAM REVIEW COUNCIL:

Continue the Program with Redirection: The program's status with respect to the categories in Section 5 of the report merits continuation. However, the program needs a curricular redirection, and the faculty and administration of the program will be asked to report as to their progress in carrying out this redirection.

III. RATING BASED ON CRITERIA:

- **Relationship to FSU Mission:** The CDTD program aligns to the FSU mission by providing a career education and opportunities for lifelong learning for FSU students.
- **Program Visibility and Distinctiveness:** The program is unique in its location in a university setting in Michigan, as well as its combining of CAD drafting and tool design in a single program. Students enroll in it to enter industry as professionals in CDTD.
- **Program Value:** The programs provide graduates for CAD drafting and tool design careers and students for four-year programs.
- **Program Enrollment:** In Fall 2008, 48 students were majoring in CDTD.
- **Characteristics, Quality, and Employability of Students:** Graduates of the program find employment in Michigan and throughout the United States.
- **Quality of Curriculum and Instruction:** Curriculum and instruction are of high quality.
- Composition and Quality of Faculty: The CDTD faculty are well qualified.

IV. APRC NOTES THE FOLLOWING STRENGTHS OF THE PROGRAM:

- The program combines CAD drafting and tool design into one program.
- The program has an experienced advisory board.
- Graduates receive good starting salaries.
- Faculty are experienced professionals.

V. APRC NOTES THE FOLLOWING CONCERNS REGARDING THE PROGRAM:

- Enrollment has declined to roughly half the level of four years ago, partially due to community college competition, and partially due to changes in the industries that formerly employed the program's students.
- Students have concerns regarding advisement and laboratory equipment, and many of those surveyed would not recommend the program to others.

• The enrollment in four-year programs that formerly received students from CDTD has been affected.

VI. THE PROGRAM MUST SUBMIT A REPORT, DUE 70CTOBER 2011, THAT FOCUSES ON THE FOLLOWING ISSUES:

• The program faculty and administration need to develop a plan to re-direct the program so that it becomes the first two-years of a four-year degree program with options corresponding to the Ferris degree programs its graduates now enroll in.