Applied Mathematics/ Actuarial Science APRC 1997-1998
section 1

Applied Mathematics / Actuarial Science:

Report of the Program Review Panel

September 15, 1997

Panel Members:
(1) John Hansen, Mathematics Department Chair
(2) Robert McCullough, Associate Professor of Mathematics, Chair of the PRP and Coordinator of the Applied Mathematics Program
(3) Walter Hoesksema, Professor of Biology
(4) Fred Wilson, Professor of Mathematics
(5) Karen Norman, Associate Professor College of Education
(6) Rick Neeley, New Business Development Director, Maritz and Advisory Board Member

Table of Contents

Section 1 Program Overview 1
Section 2-9 Overview 3
Section 2 Advisory Board Perceptions 4
Section 3 Perceptions of Graduates 7
Section 4 Perceptions of the Mathematics Department 10
Section 5 Employer Perceptions 13
Section 6 Labor Market Analysis 16
Section $7 \quad$ Perceptions of Students 20
Section 8 Evaluation of Facilities and Equipment 23
Section 9 Curriculum Evaluation 25
Section 10 Enrollment Trends 60
Section 11 Program Productivity/Cost 61
Section 12 Conclusions 62
Section 13 Recommendations 65
Appendix Program Review Panel Evaluation Form 69

Section 1: Program Overview

Abstract

The applied mathematics program and the actuarial science program are both four year programs leading to a bachelor of science degree. They are the only programs in the mathematics department leading to bachelor of science degree. The applied mathematics program has existed at Ferris State University for a number of years the actuarial science program is relatively new having existed since 1991. Both programs strive for excellence within the framework of the University, the College of Arts and Sciences, and the Department of Mathematics.

Actuarial Science

Actuaries are professionals trained in mathematics, statistics and economic techniques that allow them to put a financial value on future events. Questions typical of those answered by actuaries are: How many people aged $50-65$ will have heart attacks in 2001 and what will their average claim be? How much money does a health insurance company need to set aside to pay for all the claims it will have in a given year? How much should homeowners pay for insurance? Actuaries can answer all those questions and any other risk-based questions by building and running mathematical models. This skill, is of great value to insurance companies, investment firms, employee benefits consulting firms, and other types of companies that need to quantify (put a price tag on) financial risks. Typically, it is with this type of firm that actuaries work. Actuarial science is a well paid profession. Entry level salaries fall between $\$ 32,000$ and $\$ 45,000$. For good candidates, signing bonuses are also common. Top actuaries with many years experience often earn over $\$ 100,000$ a year. Many actuaries eventually leave the technical work behind and move into senior management of companies during the course of their careers. For example, many chief executives of insurance companies are actuaries. Actuaries must have undergraduate degrees and pass a series of examinations in order to work in the profession. There are two testing bodies in North America for actuaries, the Society of Actuaries which tests actuaries who work in the fields of life and health insurance, employee benefits, and investments and the Casualty Actuarial Society (CAS) which tests North American actuaries who work in the fields of property and casualty insurance. The actuarial science program provides students with the skills necessary to enter a career in actuarial science. A student completing the degree should be able to pass the first two actuarial exams which are administered jointly by the Society of Actuaries and the Casualty Actuarial Society.

Applied Mathematics

The applied mathematics program is designed to develop skills that are becoming increasingly valued by employers. While many applied math majors go on to graduate study in fields like statistics, mathematics or industrial management, others are entering the work force in a variety of areas. An applied math background is helpful in any job where problem-solving skills are required. Students in the applied mathematics program emphasizes both the theoretical background necessary to work in mathematics and practical applications. In addition to a number of applied mathematics and computer science courses they are required to take twenty credits in an application area. Graduates of the applied mathematics program most commonly find employment as either computer scientists or statisticians.

Section 2 to 9 Overview

The Program Review Panel carried out several different activities to evaluate the quality of the applied mathematics and actuarial science programs. This section gives a brief summary of how data was collected.
2. Advisory Board perceptions: A survey was distributed to members of the applied mathematics and actuarial science advisory board. The entire board responded.
3. Perceptions of Graduates: Graduates of the program responded to a survey.
4. Perceptions of the Mathematics Department: Since the actuarial science and applied mathematics programs are housed in the mathematics department we determined the departments perceptions of the strengths and weaknesses of the program. The mathematics department was surveyed.
5. Employer Perceptions: Employers and potential employers were surveyed.
6. Labor Market Analysis: Based on labor department statistics.
7. Perceptions of Students: Students currently enrolled in the program were surveyed.
8. Evaluation of Facilities and Equipment: A review of classroom computer display equipment, student laboratories, hardware and software.
9. Curriculum Evaluation: Bases on required class information, and comparison of programs with other Michigan schools.

Section 2 Advisory Board Perceptions

The applied mathematics and actuarial science advisory board was issued a questionnaire. The questionnaire consisted of twelve questions and an invitation to write comments. The next page is a blank questionnaire and the following page contains a summary.

Advisory Board Survey

Answer each question as follows:
5: strongly agree
4: agree
3: no opinion
2: disagree
1: strongly disagree

1. The Applied Mathematics / Actuarial Science programs are in line with the mission of Ferris State University.
2. Instruction in all required courses responds to individual student learning styles and abilities through using a variety of instructional methods.
3. Opportunities are provided for related work and/or internship experiences.
4. Ferris has an effective system for locating jobs and placing students in these programs.
5. Adequate funds are provided by the University to support the achievement of program objectives.
6. The program coordinators are well-versed in the requirements of the job market and aid the department in the formulation of new objectives for courses and programs.
7. The coordinators do an effective job in advising students.
8. Current data on labor market trends are systematically used in evaluating and modifying these programs.
9. Computer hardware is adequate for the needs of the programs.
10. Computer software is adequate for the needs of the programs.
11. The academic rigor of the required courses in the program adequately prepare students for the job market.
12. Graduate follow-up studies are used to assess and modify the programs.

Write any comments you might have on the programs.

1. The Applied Mathematics / Actuarial Science programs are in line with the mission of Ferris State University. (5.0)
2. Instruction in all required courses responds to individual student learning styles and abilities through using a variety of instructional methods. (3.67)
3. Opportunities are provided for related work and/or internship experiences. (3.33)
4. Ferris has an effective system for locating jobs and placing students in these programs. (4.67)
5. Adequate funds are provided by the University to support the achievement of program objectives. (4.0)
6. The program coordinators are well-versed in the requirements of the job market and aid the department in the formulation of new objectives for courses and programs. (4.67)
7. The coordinators do an effective job in advising students. (4.0)
8. Current data on labor market trends are systematically used in evaluating and modifying these programs. (4.33)
9. Computer hardware is adequate for the needs of the programs. (4.0)
10. Computer software is adequate for the needs of the programs. (3.67)
11. The academic rigor of the required courses in the program adequately prepare students for the job market. (5.0)
12. Graduate follow-up studies are used to assess and modify the programs. (4.0)

Comments:

1. Your students have an excellent grasp of theoretical statistics they could use a course on experimental design and sampling theory.
2. You need a way to differentiate between students who are basically statisticians and those who are basically computer scientists. (I realize looking at the course work will show this but it would be better if this was conveyed by the name of the degree.)
3. You need an advanced data structures course.
4. You need to produce more students we could use them.

Section 3
 Perceptions of Graduates

Applied mathematics and actuarial science graduates were surveyed. The questionnaire consisted of ten questions and an invitation to write comments. The next page is a blank questionnaire and the following page contains a summary.

Answer each question as follows:
5: strongly agree
4: agree
3: no opinion
2: disagree
1: strongly disagree

1. The Applied Mathematics / Actuarial Science programs are in line with the mission of Ferris State University.
2. Instruction in all required courses responds to individual student learning styles and abilities through using a variety of instructional methods.
3. Opportunities are provided for related work and/or internship experiences.
4. Ferris has an effective system for locating jobs and placing students in these programs.
5. The program coordinators are well-versed in the requirements of the job market and aid the department in the formulation of new objectives for courses and programs.
6. The coordinators do an effective job in advising students.
7. Current data on labor market trends are systematically used in evaluating and modifying these programs.
8. Computer hardware is adequate for the needs of the programs.
9. Computer software is adequate for the needs of the programs.
10. The academic rigor of the required courses in the program adequately prepare students for the job market.

Write any comments you might have on the programs.

Graduate Survey Summary

1. The Applied Mathematics / Actuarial Science programs are in line with the mission of Ferris State University. (4.67)
2. Instruction in all required courses responds to individual student learning styles and abilities through using a variety of instructional methods. (4.0)
3. Opportunities are provided for related work and/or internship experiences.(3.33)
4. Ferris has an effective system for locating jobs and placing students in these programs. (4.67)
5. The program coordinators are well-versed in the requirements of the job market and aid the department in the formulation of new objectives for courses and programs. (4.33)
6. The coordinators do an effective job in advising students. (5.0)
7. Current data on labor market trends are systematically used in evaluating and modifying these programs. (4.0)
8. Computer hardware is adequate for the needs of the programs. (4.0)
9. Computer software is adequate for the needs of the programs. (3.67)
1^{10}. The academic rigor of the required courses in the program adequately prepare students for the job market. (4.33)

Write any comments you might have on the programs.

1. A good education.
2. Everyone was helpful.
3. Instruction was better than MSU.
4. I received a number of job offers.
5. The friendliest department on campus.

Section 4
 Perceptions of the Mathematics Department

Members of the mathematics department were surveyed. The questionnaire consisted of twelve questions and an invitation to write comments. The next page is a blank questionnaire and the following page contains a summary.

Faculty Survey

Answer each question as follows:
5: strongly agree
4: agree
3: no opinion
2: disagree
1: strongly disagree

1. The Applied Mathematics / Actuarial Science programs are in line with the mission of Ferris State University.
2. Instruction in all required courses responds to individual student learning styles and abilities through using a variety of instructional methods.
3. Opportunities are provided for related work and/or internship experiences.
4. Ferris has an effective system for locating jobs and placing students in these programs.
5. Adequate funds are provided by the University to support the achievement of program objectives.
6. The program coordinators are well-versed in the requirements of the job market and aid the department in the formulation of new objectives for courses and programs.
7. The coordinators do an effective job in advising students.
8. Current data on labor market trends are systematically used in evaluating and modifying these programs.
9. Computer hardware is adequate for the needs of the programs.
10. Computer software is adequate for the needs of the programs.
11. The academic rigor of the required courses in the program adequately prepare students for the job market.
12. Graduate follow-up studies are used to assess and modify the programs.

Write any comments you might have on the programs.

1. The Applied Mathematics / Actuarial Science programs are in line with the mission of Ferris State University. (4.6)
2. Instruction in all required courses responds to individual student learning styles and abilities through using a variety of instructional methods.(3.27)
3. Opportunities are provided for related work and/or internship experiences.(2.93)
4. Ferris has an effective system for locating jobs and placing students in these programs.(3.47)
5. Adequate funds are proviged ty the University to support the achievement of program objectives. (2.47)
6. The program coordinators are well-versed in the requirements of the job market and aid the department in the formulation of new objectives for courses and programs.(4.13)
7. The coordinators do an effective job in advising students.(4.2)
8. Current data on labor market trends are systematically used in evaluating and modifying these programs.(3.6)
9. Computer hardware is adequate for the needs of the programs.(4.13)
10. Computer software is adequate for the needs of the programs. (3.73)
11. The academic rigor of the required courses in the program adequately prepare students for the job market.(4.2)
12. Graduate follow-up studies are used to assess and modify the programs.(3.27)

Comments:

1. No program anywhere can respond to individual student learning styles and abilities while maintaining the integrity of the program. Students must be able to respond to the market (not the market to the student.).
2. 3,4 and 5 are the key to a successful program.
3. This is not a bad thing. (Referring to a low score on 2.)
4. Small classes are not routinely allowed. (Referring to a low score on 5.)
5. Informally. (Referring to 8 and 12.)
6. On average, but not uniformly. (Referring to 12.)
7. Regarding Question 3 , even though the answer is 4 -agree, more exploration should be done in acquiring internship availability.
8. I don't teach these students so my responses are to be taken lightly.
9. Classes should be allowed to go with low enrollments.

Section 5

Employer Perceptions

Employers and potential employers were surveyed. The questionnaire consisted of five questions and an invitation to write comments. The next page is a blank questionnaire and the following page contains a summary.

Employer Survey

Answer each question as follows:
5: strongly agree
4: agree
3: no opinion
2: disagree
1: strongly disagree

1. The Applied Mathematics / Actuarial Science programs are in line with the mission of Ferris State University.
2. The program coordinators are well-versed in the requirements of the job market and aid the department in the formulation of new objectives for courses and programs.
3. The coordinators do an effective job in advising students.
4. Current data on labor market trends are systematically used in evaluating and modifying these programs.
5. The academic rigor of the required courses in the program adequately prepare students for the job market.

Write any comments you might have on the programs.

Employer Survey

1. The Applied Mathematics / Actuarial Science programs are in line with the mission of Ferris State University. (4.75)
2. The program coordinators are well-versed in the requirements of the job market and aid the department in the formulation of new objectives for courses and programs. (4.5)
3. The coordinators do an effective job in advising students. (4.25)
4. Current data on labor market trends are systematically used in evaluating and modifying these programs. (4.0)
5. The academic rigor of the required courses in the program adequately prepare students for the job market. (4.75)

Comments:

Section 6
 Labor Market Analysis

The following tables are taken from a survey by the NSF of recent college graduates who were employed in non-academic positions. The 1993 National Survey of Recent College Graduates sponsored by the NSF provides a look at demographic, educational and employment characteristics of recent bachelor's and master's degree recipients. The survey includes data on degree recipients who graduated during spring 1990, academic year 1990-1991, and academic year 1991-1992. A sample of 25,785 graduates (16,585 bachelor's and 9,200 master's) were selected and the unweighted response rate was 85.7 percent. Of those who responded, 673 had received bachelor's degrees in the mathematical sciences and 391 had received master's degrees in the mathematical sciences. Participants were asked questions about their education background and their present employment status. They were also asked information about their work day activities and salary. This is a summary of the data focusing on the types of nonacademic positions recent graduates are obtaining and the duties they perform. We have only listed bachelor's degree information.
A note on the data:
The NSF counts students employed by a university as a graduate or research assistant within the employment area that comes closest to their field. So a graduate assistant working on statistical applications is counted under the job code for Statistics. However, for the purposes of this summary, graduates who are full or part-time students working as graduate or research assistants are counted as academically employed. They were identified by their employer, salary (under 15,000), and by the description they gave of their position. A graduate student who is a teaching assistant teaching in mathematics would be listed under Postsecondary Education, Mathematics in the NSF data and for this study would also be counted as academically employed.

Participants were asked questions about their education background and their present employment status. In particular, each bachelor's degree recipient was asked about their major area of study. Those who majored in the mathematical sciences were asked to choose from four major areas of study. Table 1 displays the result for bachelor's graduates in the mathematical sciences.

Table 1: \% of Bachelor's Degree Recipients by Major Area of Study in the Mathematics Sciences

Major Area of Study	Percent of Bachelor's Recipients
General Mathematics	82
Applied Mathematics	8
Statistics	4
Operation Research	1
Other	5

Table 2 displays the percent of bachelor's degree recipients with a major in the mathematical sciences by sector of employment. The academic sector includes the following: teachers in primary or secondary education; educators in post secondary positions; and graduate students working as teaching assistants or graduate assistants. Graduates who are not full time students or graduate research assistants but are employed by academic institutions in non-teaching positions are considered employed in a nonacademic position.

Table 2: \% of Bachelor's Degree Recipients with a Major in the Mathematical Sciences by Employment Sector

Employment Sector	Percent of Bachelor's Recipients
Nonacademic	58
Academic	29
Student, Not Employed	7
Other Unemployed	5

Each employed participant was asked to identify their occupation by choosing a job code which best identified their principle occupation. Table 3 displays the percent of bachelor's graduates in nonacademic occupations by occupation area. Respondents classified as Management and Related Positions describe a range of positions, including management of programs or projects, personnel management and management consultants. Those classified as Other show an even greater range of positions, including technical writer, law clerk, landscaper, bartender, casino dealer, and pilot.

Table 3: \% of Bachelor's Degree Recipients with a Major in the Mathematical Sciences Working in a Nonacademic Position by Occupation

Occupation
Accounting and Finance
Computer Programming
Sales and Marketing
Manament and Relations Position
Management and Related Positions
Actuarial
Computer Systems Analysis
Engineering
Statistics
Mathematics, OR, Modeling 2
Other Computer Science 6
Other Sciences, Health, and Social Services 3
Other Technical Areas 2
Other Occupations 23

Percent of Bachelor's Recipients

14

141086543263223Participants were asked to identify the type of company or institution that employed them. Table 4 displays the result or responses given by bachelor's degree recipients with a major in the mathematical sciences working in a nonacademic position. Recall that the positions at education institutions are nonteaching positions, such as positions in the business office.

Table 4: \% of Bachelor's Degree Recipients with a Major in the Mathematical Sciences in a Nonacademic Position by Type of Employer

Type of Employer	Percent of Bachelor's Recipients
Private for Profit	77
Private, Not for Profit	3
Self Employed	3
Education Institution	7
Federal Government - Civilian	3
Federal Government - Military	3
State or Local Government	4

Participants were asked to list the top two activities they spend the most hours working at during a typical week. Table 5 shows the response of bachelor's degree recipients with a major in the mathematical sciences in a nonacademic position to being asked on which activity they spent the most hours and Table 6 displays their response to being asked on which activity they spent the second most number of hours. Table 5 shows that 32% of the respondents spent the most number of their work hours on computer applications. Table 6 shows that 16% of the respondents choose computer applications as the activity with the second most number of hours and 18% choose no second activity.

Table 5: \% of Bachelor's Degree Recipients With a Major in the Mathematical Sciences in a Nonacademic Position Selecting an Activity They Spend the Most Hours Working on During a Typical Work Week

Activity

Computer Applications
Accounting, Finance, Contracts
Management and Administration
Professional Services
Sales, Purchasing, Marketing
Applied Research
Quality or Productivity Management
Development
Basic Research
Employee Relations
Production, Operations, Maintenance
Teaching

Percent of Bachelor's Recipients
32
11
8
8
7
5543332
Design Equipment, Processes, Structure 1
Other 8
Table 6: \% of Bachelor's Degree Recipients With a Major in the MathematicalSciences in a Nonacademic Position Selecting an Activity They Spend theSecond Most Number of Hours Working on During a Typical Work Week
Activity
Computer Applications
Applied Research
Management and AdministrationEmployee RelationsPercent of Bachelor's Recipients1610
Quality or Productivity Management 9
Accounting, Finance, Contracts 8
Development 68
Basic Research
Basic Research 4
Professional Services 4
Sales, Purchasing, Marketing 4
Design Equipment, Processes, Structure 3
Teaching 2
Production, Operations, Maintenance 1
Other 1
Inapplicable (No Answer) 18

Participants were asked for their salary, before deductions, and not including bonuses, overtime or additional compensation. Table 7 displays this data for bachelor's degree recipients with a major in the mathematical sciences working in a nonacademic position. These are graduates employed full time and does not include those who are self-employed (part-time or full-time).

Table 7: \% of Bachelor's Degree Recipients With a Major in the Mathematical Sciences in a Nonacademic Position by Full Time Salary Range

Salary Range
Less Than \$10,000
\$10,000-\$19,999
\$20,000 - \$29,999
\$30,000-\$39,000
\$40,000-\$49,999
\$50,000-\$59,999

Percent of Bachelor's Recipients 123343092

Section 7
 Perceptions of Students

Students were surveyed. The questionnaire consisted of seven questions and an invitation to write comments. The next page is a blank questionnaire and the following page contains a summary.

Student Survey

Answer each question as follows:
5: strongly agree
4: agree
3: no opinion
2: disagree
1: strongly disagree

1. Instruction in the required courses responds to individual student learning styles and abilities through using a variety of instructional methods.
2. Opportunities are provided for related work and/or internship experiences.
3. The coordinators do an effective job in advising students.
4. Computer hardware is adequate for the needs of the programs.
5. Computer software is adequate for the needs of the programs.
6. The academic rigor of the required courses in the program adequately prepare students for the job market.
7. I am satisfied with instruction in the program.

Write any comments you may have on the program.

Student Survey Summary

1. Instruction in the required courses responds to individual student learning styles and abilities through using a variety of instructional methods. (3.67)
2. Opportunities are provided for related work and/or internship experiences.(2.67)
3. The coordinators do an effective job in advising students.(4.33)
4. Computer hardware is adequate for the needs of the programs.(3.33)
5. Computer software is adequate for the needs of the programs.(2.67)
6. The academic rigor of the required courses in the program adequately prepare students for the job market.(4.33)
7. I am satisfied with instruction in the program. (4.67)

Write any comments you may have on the program.

1. There should be more courses to choose from.

Section 8
 Evaluation of Facilities and Equipment

Rooms and Hardware

There are presently three classrooms equipped with a computer and large screen display. These classrooms are used for computer science courses and for courses in which Derive (a symbolic algebra system) is used. As more and more mathematics classes move toward using derive we will most likely need more such rooms. At present this is an adequate number of such rooms.

The main computing facility used by the students is located in ASC 1015. It consists of fifty Pentium workstations. This more than adequate for present usage. In addition faculty sometimes bring students to the Computer seminar room in ASC 1008 or the small computer seminar room in STR 109. The computer seminar room in ASC 1008 has thirty-five Pentium workstations and large screen projection. The small computer seminar room in STR 109 has twenty Pentium workstations and large screen display.

Software

Computer Science Courses:

The department currently teaches CPSC 205 and CPSC 215 in Pascal. The current Pascal compiler has an expired licensee this means we are allowed to use it but cannot reinstall it on the network. The department is thinking about changing the language for these courses. Whether or not we change languages a new compiler should be decided on within the next two years. We have a similar problem with the assembler used in CPSC 310 and with the FORTRAN compiler used in CPSC 244. There is also a need to change to Visual Basic from Quick Basic in CPSC 150.

Mathematics Courses:

On the mathematics side we have just upgraded our computer algebra system to Derive for windows and the upgrade seems to be working well. Derive is currently required in MATH 220 Analytic Geometry and Calculus 1 and in MATH 230 Analytic Geometry and Calculus 2. It is also sometimes used in higher level courses such as MATH 320 Analytic Geometry and Calculus 3 and MATH 330 Differential Equations. It is also used in two courses that are not part of either
program MATH 216 Applied Calculus and Math 226 Fourier Series and Applied Differential Equations.
Statistics Courses:
Currently SPSS is available for use in our statistics courses. Some people think SAS would be a much better choice for our students. SPSS is sufficient for our current level of involvement.

Section 9
 Curriculum Evaluation

Successful graduates of the Actuarial Science program are equipped with the skills necessary to start an actuarial career. The actuarial science program does a good job of equipping students with these skills. For those students choosing not to become actuaries the program ensures sufficient background in statistics and computer science so they can find employment. This is ensured by our advisory board and by our continued monitoring of professional guidelines and examinations. The applied mathematics program ensures that its graduates will have a strong back ground in mathematics that is applicable in business or industry. The applied mathematics program also does an excellent job of preparing students for graduate studies in mathematics, statistics, or computer science.

High-level mathematics courses are shared between the actuarial science program, the applied mathematics program and the mathematics education program. All of the mathematics courses in the actuarial science program are either required or valid electives in the applied mathematics program with the exception of MATH 250, MATH 385, and MATH 485. All of the mathematics courses in the actuarial science program are also either required or elective courses in the mathematics education program. This makes for a rather interesting synergy between the programs.

Required mathematics and computer science courses in the actuarial science program:
CPSC 205
CPSC 215
MATH 220
MATH 230
MATH 250
MATH 314
MATH 320
MATH 322
MATH 328
MATH 340
MATH 360
MATH 385
MATH 414
MATH 416
MATH 485
Required mathematics and computer science courses in the applied mathematics program:
CPSC 205

CPSC 215

MATH 220
MATH 230
MATH 320
MATH 322
MATH 328
MATH 340
MATH 360
MATH 380
MATH 414
MATH 440
Elective mathematics and computer science courses in the applied mathematics program:

CPSC 310
CPSC 320
CPSC 326
CPSC 328
CPSC 350
CPSC 442
MATH 314
MATH 324
MATH 325
MATH 416
MATH 420
MATH 430
Required mathematics and computer science courses in the mathematics education program:
CPSC 205 or CPSC 244
MATH 220
MATH 230
MATH 314
MATH 320
MATH 322
MATH 324
MATH 325
Elective mathematics courses in the mathematics education program:
9 credits of mathematics electives.
The next pages contain the syllabi for all mathematics and computer science courses in both programs.

MATH 220

CALCULUS AND ANALYTIC GEOMETRY I

Topics include: the limit, continuity, the derivative, differentiation of algebraic and transcendental functionswith applications, implicit differentiation, and introduction to integration with applications.
TEXT: Calculus, Sth Edition, Larson, Hostetler, and Edwards, Heath Publishing Company.
PREREQUISITE: MATH 130 with a grade of C- or better or its equivalent
Sections Topic Approxhrs
i-1 - i-6Algebraic and Trigonometric Functions(Introduce DERIVE - Lab)5
$1.1 \cdot 1.5$
Limits and Their Properties
Limits and Their Properties 6 6
(Omit formal definition of the limit)
$2.1-2.6$ Differentiation 14
3.1-3.7 3.9
Applications of Differentiation 14
Differentials
(Omit 3.8 and 3.10)
4.1-4.5 Integration 10
4.6 Trapezoidal rule only
5.1-5.6 Logarithmic and Exponential Functions 10(Omit 5.7, 5.8, and 5.9)
Review, Quizzes, and Exams 10
Final Exam 2

MATHEMATICS COURSE CONTENT

MATH 230

CALCULUS AND ANALYTIC GEOMETRY II (5 Sem. Hrs.)

Applications of integration, inverse trigonometric functions, techniques of integration, indeterminate forms, numerical methods and approximation, infinite series, conics and polar coordinates, vector-valued functions and curvilinear motion.

TEXT: CALCULUS, Sth Edition, Larson, Hostetler, and Edwards, Heath Publ.
PREREQUISITE: MATH 220 with a grade of C - or better or its equivalent

Sections
 Topic

5.7, $5.8 \quad$ Inverse Trig Functions.
6.1-6.7 Applications of Integration
7.1-7.8 Integeration Methods, L'Hopitals Rule, Improper integrals
8.1-8.10 Sequences and Series, Polynomial Approximation
9.1-9.3 Basic Conic Sections
10. 1-10.4 Parametric Equations and Polar Coordinates

MATH 250
STATISTICS FOR THE LIFE SCIENCES
2 credit hours
(F.Wilson, Fall, 1994)

Application of statistical methods to describing data and making decizions from data in the life sciences. Topics include: frequency distributions, central tendency, dispersion, probability, probability distributions, straistical inference, hypothesis testing, regression and correlation, and analysis of variance.
PREREQUISITE: Grade of C- or higher in MATH 130 (old MTH 125) or equivalent
TEXT: Statistical Methods in the Biological and Health Sciences, Milton, 2nd edition, McGraw-Hill

CONTENT

Chapter 1 DESCRIPTIVE METHODS
 1.1

1.2 A Quick Look at Distribution: Stem and Leaf
1.3 Frequency Distributions: Histograms, Cumulative Distribution
1.4 Measures of Location
1.5

Chapter 2
2.1
2.2
2.3
2.4
2.5

Chapter 3
3.1
3.2
3.3

$$
3.4
$$

3.5
3.6
3.7

Chapter 4
4.1
4.2
4.3
4.4

Chapter 5
5.1
5.2
5.3

Chapter 6
6.1
6.2
6.3
6.4
6.5 6.6

Chapter 8
8.1
8.2
8.3
8.4
8.5
8.6

Chapter 9
9.1
9.3
9.4
9.5

Measures of Variability
INTRODUCTION TO PROBABILITY AND COUNTING
Interpreting Probabilities
Tree Diagrams and Elementary Genetics
Permutations and Combinations
Multiplication Principle
Permutations of Indistinguishable Objects
PROBABILITY AND PROBLEM SOLVING
Venn Diagrams and the Axioms of Probability
General Addition Rule
Conditional Probability
Diagnostic Tests and Relative Risk
Independence
The Multiplication Rule
Bayes' Theorem

DISCRETE RANDOM VARIABLES

Discrete and Continuous Variables

Discrete Density Functions and Expectation Cumulative Distribution Function
Binomial Distribution

CONTINUOUS RANDOM VARIABLES

Continuous Density Functions and Expectation
Cumulative Distribution Function
Normal Distribution

INFERENCES ON THE MEAN

Random Sample and Randomization
Point Estimation of the Mean
Rules for Expectation and Variance (Optional)
Introduction to Interval Estimation
Confidence Interval on the Population Mean and the T Distribution
Introduction to Hypothesis Testing
INFERENCES ON PROPORTIONS
Point Estimation
Interval Estimation of p
Sample Size for Estimating p
Hypothesis Testing on p
Comparing Two Proportions: Estimation
Comparing Two Proportions: Hypothesis Testing
COMPARING TWO MEANS
Point Estimation: Independent Samples
Inferences on μ, $-\mu_{2}$: Pooled T
Inferences on $\mu,-\mu_{2}$: Unequal Variances
Inferences on u. $-u_{2}$: Paired T

MATH 314 PROBABILITY 3 Credits
Discrete probability theory, including: Combinatorial analysis, properties of probability, conditional probability, random variables, expectation, and limit theorems.
Prerequisite: MATH 220
Text: Probablity, An Introduction, Samuel Goldberg, 1960, Dover Publications
CONTENT

CHAPTER

1. SETS

TOPIC

1. Examples of sets; basic notation, 1
2. Subsets, 8
3. Operations on sets, 16
4. The algebra of sets, 28
5. Cartesian product sets, 39
6. Sample spaces, 45
7. Events, 51
8. The probability of an event, 54
9. Some probability theorems, 64
10. Conditional probability and compound experiments, 74
11. Bayes' formula, 91
12. Independent events, 102
13. Independence of several events, 107
14. Indepenent trials, 113
15. A probability model in genetics, 123
16. Counting techniques and probability problems, 132
17. Binomial coefficients, 149
18. Random variables and probability functions, 158
19. The mean of a random variable, 172
20. The variance and standard deviation of a random variable, 185
21. Joint probability functions; independent random variables, 197
22. Mean and variance of sums of random variables; the sample mean, 212
23. Covariance and correlation; sample mean (cont.) 232
24. Bernoulli trials and the binomial distribution, 252
25. Testing a statistical hypothesis, 272
26. An example of decision-making under uncertainty, 286

MATH 320 ANALYTICAL GEOMETRY AND CALCULUS III 3 credits

The fourth of a three-semester sequence in analytic geometry and calculus. Topics include: vector valued nctions, functions of several variables, and multiple integrals.

- REREQUISITE: MATH 230

TEXT: Calculus With Analytical Geometry, 6th Ed., Dale Varberg \& Edwin Purcell, Prentice Hall Publisher.
CONTENT

CHAPTER/SECTION

TOPIC

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7

15
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

16
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

17
17.1
17.2
17.3
17.4
17.5
17.6

GEOMETRY IN SPACE, VECTORS

Cartesian Coordinates in Three-Space
Vectors in Three-Space
The Cross Product
Lines and Curves in Three-Space
Velocity, Acceleration, and Curvature Surfaces in Three-Space
Cylindrical and Spherical Coordinates
THE DERIVATIVE IN n-SPACE
Functions of Two or More Variables
Partial Derivatives
Limits and Continuity
Differentiability
Directional Derivatives and Gradients
The Chain Rule
Tangent Planes, Approximations
Maxima and Minima
THE INTEGRAL IN n-SPACE
Double Integrals over Rectangles
Iterated Integrals
Double Integrals over Nonrectangular Regions
Double Integrals in Polar Coordinates
Applications of Double Integrals
Surface Area
Triple Integrals (Cartesian Coordinates)
Triple Integrals (Cylindrical and Spherical Coordinates)

VECTOR CALCULUS

Vector Fields
Line Integrals
Independence of Path
Green's Theorem in the Plane
Surface Integrals
Gauss's Divergence Theorem

MATH 322 LINEAR ALGEBRA

An introduction to the theory of vector spaces with emphasis on matrix algebra. Topics included are linear transformation, independence, rank, and inverses. $(3+0)$

PREREQUISITE: MATH 220
TEXT: Introductory Linear Algebra with Applications, 6th Edition, Kolman
CONTENT
CHAPTER/SECTION TOPIC
Chapter $1 \quad$ Linear Equations and Matrices
1.1 Linear Systems
1.2 Matrices
1.3 Dot Product and Matrix Multiplication
1.4 Properties of Matrix Operations
1.5 Solutions of Equations
1.6 The Inverse of a Matrix

Chapter 2 Determinants
2.1 Definition and Properties
2.2 Cofactor Expansion and Applications
2.3 Determinants from a Computational Point of View

Chapter $3 \quad$ Vectors and Vector Spaces
13.1 (Optional) Vectors in the Plane
3.2 n-vectors
3.3 Introduction to Linear Transformations
3.4 (Optional) Computęr Graphics
3.5 Cross Products in R^{3}
3.6 Lines and Plains

Chapter $4 \quad$ Linear Transformations and Matrices
4.1 Real Vector Spaces
4.2 Subspaces
4.3 Linear Independence
4.4 Basis and Dimension
4.5 Homogenous Systems
4.6 The Rank of a Matrix and Applications
4.7 Coordinates and Change of Basis
+8 (Optional) Orthonormal Bases in R^{N}

Chapter 5 (Optional) Eigen Values and Eigen Vectors
5.1 Diagonalization
5.2 Diagonalization of Symmetric Matrices

An introduction to mathematical structure and deductive logic thru the study of fundamental systems. Topics include logic, sets, relations and functions. The fundamental methods of mathematical proofs are emphasized throughout the course.

PREREQUISITE: One term of calculus.
TEXT: A Transition to Advanced Mathematics; Smith, Eggen, and St. Andre; Third Edition; Brooks/Cole.

CONTENT
Chapter/Section

Chapter	1	Logic and Proofs
	1.1	Proposition and Connectives
	1.2	Conditionals and Biconditionals
	1.3	Quantifiers
	1.4	Mathematical proofs
	1.5	Proofs involving quantifiers
	1.6	Additional examples of proofs

Chapter 2 Set Theory
2.1 Basic notions of set theory
2.2 Set Operations
2.4 Mathematical induction

Chapter 3 Relatations
3.1 Cartesian Products and Relations
3.2 Equivalence Relations

Chapter 4 Functions
4.1 Functions as Relations

Chapter 6 Concepts of Algebra
6.1 Algebraic Structures

MATHEMATICS CORSE CONTENT

This course's primary function is to prepare a student to teach high school geometry.

TEXT: Roads to Geometry, Wallace and West, Prentice Hall Publishing C.
PREREQUISITE: MATH 230 or consent of instructor.

CONTENT

The course content will consist of related topics in the first 5 chapters. Some supplementary topics will be added as deemed necessary to ensure that the students will be able to handle the teaching of the first year of high school geometry. If there are questions please contact Mr. Dargitz or Ms. Allegretto.

Ordinary linear differential equations and classical solutions to special types of non-linear equations. Series solutions, systems of linear differential equations and numerous applications of differential equations.
PREREQUISITE: MAIH 330 OF EQUIVALENT OF CONSENT OF INSIRUCTOR. TEXT: DIFFERENITAL EOUATIONS - A Modeling Approach, Frank R. Giordano \& Maurice D. Weir, Addison-Wesley Publishing Company.

CONIENT

Chapter 1	DIFFERENITAL EQUATIONS AND MODETS
1.1	Solutions and Initial Value Problens.
1.2	An Overview of Modeling.
1.3	Modeling with first order ODE.
	-There are four models. Try to do at least two.
1.4	Graphing Solutions to first order ODE.
Chapter 2	FIPST - ORDER DIFFERENITAL EQUATIONS
2.1	Separation of Variables.
2.2	Linear Equations.
2.3	Exact Equations.
Chapter 3	HOMDGENEOUS LINEAR EQUATIONS (with constant coefficients)
3.1	Modeling with Linear Differential Equations.
3.2	Second Order Equations - Basic Theory.
3.3	Constant Coefficient Homogeneous linear Equations.
3.4	Applications - Can use any of the models in this section or use a model of your own choice.
3.5	Linear Higher Order Equations.
Crapter 4	NON HOMOCGENEOUS LINEAR EQUATIONS
4.1	Solutions to non homogeneous linear equations.
4.2	Method of Undetermined coefficients.
4.4	Variation of parameters. (May go over 4.3 if needed)
4.5	Applications - Can use the model in this section or use a model of your own choice.
Chapter 7	SYSTEMS OF FIRST ORDER DIFFERENTIAL EQUATICNS
7.1	Modeling with more than one dependent variable.
7.2	Solutions to Systems of Differential Equations.
	-Problems 11 - 44 cannot be done with material in the section.
7.3	Homogeneous 2×2 linear systems with constant coefficients.
7.4	Distinct Eigervalues.
7.5	Repeated Eigenvalues.
7.6-7.8	Applications - Can use the models in these sections or use a model of your own choice. Do as many as time permits.
Crapter 9	LINEAR EQUATIONS WITH VARIABLE COEFFICIENIS
9.1	Power Series Solutions.
9.2	Frobenius Series.

OPIIONAL: Any of the following sections can be covered if time permits. 2.5, 2.7, 2.8, 2.9, 8.1, 8.2, 8.3, 9.5, 9.6

Fall, 1993
V. Kanecry

MAIHEMATICS OOURE CONIENT
MAIH 340
NUMERICAL ANALYSIS
3 Credits
Numerical algorithms for root finding, interpolation, integration, linear algebra, and differential equations.

Prerequisite: CPSC 215 and at least a corequisite of MATH 320.
Text: Numerical Mathematics and Computing, by Cheney and Kincaid, Brooks/Cole Publishing, 2nd edition.

CONIENT
CHAPTER/SECTION
SUGGBSTED TORIC

Crapter 1
1.1
1.2

Chapter 2
2.1
2.2
2.3

Chapter 3
3.1
3.2

Chapter 4
4.1
4.2
4.3

Chapter 5
5.1
5.2
5.3

Chapter 6
6.1
6.2
6.3

Chapter 7 OR
Chapter 10 SMOOIHING OF DATA AND THE MEIHOD OF LEAST SQUARES
10.1 AND 10.2

Chapter 8
8.1
8.2

Chapter 11
11.1
11.2
11.3

Chapter 12
12.1
12.2

ORDINARY DIFFERENIIAL EQUATIONS
Taylor Series Method
Runge-Kutta Methods
SYSTEMS OF ORDINARY DIFFERENIIAL EQUATIONS
Methods for First-Order Systems Higher-Order Equations and Systems
Adams-Moulton Methods
BOUNDARY VAUEE PROBLEMS FOR ORDINARY DIFF. -QUAIIONS Shooting Method A Discretization Method

MATHEMATICS COURSE CONTENT

MATH 360 OPERATIONS RESEARCH 3 Credits Offered fall of even numbert years
This course covers the main topics of operations research, including model formulation, linear programming, integer programing, nonlinear programming, network analysis, deterministic and stochastic dynamic programming, game theory, and decision theory.

Text: Schaum's Outline of Theory and Probleins of Operations Research, by Richard Bronson, 1982

Prerequisite: MATH 231
CHAPTER TOPIC DAYS

Chapter 1
Mathematical Programming 3

Chapter 2 Linear Progranming: Standard Form 3
Chapter $3 \quad$ Linear Programming: Theory of Solutions 3
Chapter $4 \quad$ Linear Programming: The Simplex Method 4
Chapter 5
Extra Topic
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Linear Programining: Duality 2
Linear Programaing: Karmarkar's Algorithm 2
Integer Programming: Branch-and-Bound Algorithm 2
Integer Programming: Cut Algorithms 2
The Transportation Algorithin 3
Scheduling Models 3
Single-Variable Optimization 2
Deterministic Dynamic Programming 2
Network Analysis 3
Game Theory 2
Decision Theory 2
Stochastic Dynamic Programming 2

CONTENT

Tasts 4

Fall, 1993
V. Konecny

MATHEMATICS COURSE CONTENT

MATH 380 APPLIED ANALYSIS 3 Credits

Classical Applied Mathematics and its Applications. Laplace Transforms. Fourier Series, Vector Calculus, Partial Differential Equations, Complex Functions and Applications.

Prerequisite: MATH 320 Analytic Geometry and Calculus 3
Text: Advanced Engineering Mathematics, by James A. Cochran, H. Clara Wiser, Bernhard J. Rice, 2nd Edition, Wadsworth. Inc. 1987

CONTENT

CHAPTER/SECTION
Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Chapter 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Chapter 10
10.10
10.11

SUGGESTED TOPIC
INTRODUCTION
Introduction
Definition of the Laplace Transformation
Existence of the Laplace Transform
Some General Properties
Transforming Periodic Functions
The Inverse Laplace Transform
Solutions to Ordinary Diff. Equations
A "Turn-on" Function
The Convolution Theroem

FOURIER EXPANSIONS
Introduction
The Space PC (-L,L)
Two Kinds of Convergence
Fourier Coeffirients
Alternate Expressions for Fourier Series
Subspaces of $P C(-L, L)$
Properties cif Fourier Coefficients
Convergence of a Fourier Series
Sine and Cosine Series
Which Fourier Expansion to Use An Application

VECTOR CALCULUS: DIFFERENTIATION
Variation of a Vector Field: Divergence
Variation of a Vector Field: Curl

MaTh 380 Applied Analysis (con't)

CHAPTER/SECTION
SUGGESTED TOPIC

Chapter 11
11.3
11.4
11.5
11.6
11.7
11.8
11.9

VECTOR CALCULUS: IMTEGRATION
Evaluation of Line Integrals
Path Independence
Surface Area
Surface Integrals of Scalar \& Vector Fields Green's Theoram in the Plane Stokes' Theorem Divergence Theorem
**** The Choice of the Following Depends on the Instructor

Chapter 8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.9

Chapter 12
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

Chapter 13
Chapter 14
Chapter 15
Chapter 16

PARTIAL DIFFERENTIAL EQUATIONS
Introduction
Boundary Value Problem
Superposition
Two Metheds
More on Separation of Variables The Yave Equation
Solution by D'Alembert's Method The Heat Equation

COMPLEX FUNCTIONS
Introduction
Complex Numbers
The Complex Plane
Functions and Mappings
The Dorivatior of a Complas Function
Integral and Fractional Powers of z
The Exponential Function
Complex Tria. Finctions
Invarse Functions
MAPPING BY ANALYTIC FUNCTIONS
INTEGRATION IN THE COMPLEX PLANE
COMPLEX SERIES
APPLICATIONS OF RESIDUE THEORY

Fall, 1993
G. Arnold

MATHEMATICS COURSE CONTENT

Prerequisite: MATH 320 and at least corequisite of MATH 322.
This course will help prepare students to take the Society of Actuaries' Professional Exam 100 . Emphasis will be given to analysis of previous exams, study of sample questions, and general test taking techniques. Grading will be credit/no credit only.

A theoretical course in probability and statistics including distributions and densities, expectation, moment generating functions and functions of random variables. $(3+0)$

Prerequisite: MATH 320
Text: Mathematical Statistics, 5th Edition, J. Freund, Prentice Hall
CONTENT

CHAPTER/SECTION

TOPIC

Chapter 1	Introduction
1.1	Introduction
1.2	Combinatorial Methods
1.3	Binomial Coefficients
Chapter 2	Probability
2.1	Introduction
2.2	Sample Spaces
2.3	Events
2.4	Some Rules of Probability
2.5	Conditional Probability
2.6	Independent Events
2.7	Bayes' Theorem
2.8	
Chapter	
3.1	Probability Distributions
3.2	Introduction
3.3	Continuous Random Variables
3.4	Probability Density Functions
3.5	Multivariate Distributions
3.6	Marginal Distributions
3.7	
Conditional Distributions	
Chapter 4	Mathematical Expectation
4.1	Introduction
4.2	The Expected Value of a Pandom Variable
4.3	Moments
4.4	Chebyshev's Theorem
4.5	Moment-Generating Functions
4.6	Product Moments
4.7	Moments of Linear Combinations of Random Variables
4.8	Conditional Expectations

Math 414 Content cont.
CHAPTER/SECTION
TOPIC

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7

Chapter 7
7.1
7.2
7.3
7.4
7.5

Special Distributions
Introduction
The Discrete Uniform Distribution
The Bernoulli Distribution
The Binomial Distribution
The negative Binomial and Geometric Distribution
The Hypergeometric Distribution
The Poisson Distribution
Special Densities
Introduction
The Uniform Densit:
The Gamma; Exponential, and Chi-square Distributions
The Beta Distribution
The Normal Distribution
The Normal Approximation to the Binomial Distribution
The Bivariate Normal Distribution
Functions of Random Variables
Introduction
Distribution Function Pechnique
Transformation Technique: One Variable
Transformation Technique: Two Variables Moment-Generating Function Technique

Review and Testing

Applied Mathematics/ Actuarial Science APRC 1997-1998 section 2

MATHEMATICS COURSE CONTENT
MATH 415
MATHEMATICAL STATISTICS It
3 CREDITS
A continuation of Math 414 including sampling distributions, estimation, hypothesis testing, regression, and ANOVA. $(3+0)$

Prerequisite: Math 414
Text: Mathematical Statistics, 5th Edition, J. Freund, Prentice-Hall
CONTENT

CHAPTER/SECTION
Chapter 8 SAMPLING DISTRIBUTIONS
8.1 Introduction
8.2

The Distribution of the Mean
8.3
8.4
8.5
8.6
8.7

Chapter 9
9.1
9.2
9.3
9.4
9.5
9.6

Chapter 10
10.1
10.2
10.3
10.4
10.5
10.7
10.8
10.9

Chapter 11
11.1
11.2
11.3
11.4
11.5
11.6
11.7

The Distribution of the Mean: Finite Fopulations
The Chi-square Distribution
The t Distribution
The F Distribution
Order Statistics
DECISION THEORY
Introduction
The Theory of Games
Statistical Games
Decision Criteria
The Minimax Criterion
The Bayes Criterion
POINT ESTIMATION
Introduction
Unbiased Estimators
Efficient Estimators
Consistent Estimators
Sufficient Estimators
The Methoid of Moments
The Method of Maximum Likelihood
Bayesian Estimators
INTERVAL ESTIMATION
Introduction
Confidence Intervals for Means
Confidence Intervals for Differences Between Means
Confidence Intervals for Proportions
Confidence Intervals for Differences Between
Proportions
Confidence Intervals for Variances
Confidence Intervals for Ratios of Two Variances
12.1
12.2
12.3
12.4
12.5
12.6

Chapter 13
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Chapter 14
14.1
14.2
14.3
14.4
14.5
14.6
14.7

Chapter 15
15.1
15.2
15.3
15.4
15.5

Introduction
Testing a Statistical Hypothesis
Losses and Risks
The Neyman-Pearson Lemma
The Power Function of a Test
Likelihood Ratio Tests

HYPOTHESIS TESTING: APPLICATIONS
Introduction
Tests Concerning Means
Tests Concerning Differences Between Means
Tests Concerning Variances
Tests Concerning Proportions
Tests Concerning Differences Among k Proportions
$r \times c$ Tables
Goodness of Fit
REGRESSION AND CORRELATION
Introduction
Linear Regression
The Method of Least Squares
Normal Regression Analysis
Normal Correlation Analysis
Multiple Linear Regression
Multiple Linear Regression (Matrix Notation)
analysis of variance
Introduction
One-Way Analysis of variance
Experimental Design
Two-Way Analysis of Variance
Some Further Considerations
Review and Testing

Fall, 1993
R. Agrawal

MATHEMATICS COURSE CONTENT
MATH 420 an INTRODUCTION TO ABSTRACT ALGEBRA 3 Credits
Groups, rings, integral domains, fields and their elementary properties. Equivalence relations, congruence, homomorphisms, and isomorphisms.

Prerequisite: MATH 230 and either MATH 324, MATH 322 or MATR 328
Text: A FIRST COURSE IN ABSTRACT ALGEBRA, 4 th Edition, by John B. Fraleigh, Addison-Wesley Publishing Company

CONTENT

*AS TIME PERMITS

```
[H 430 ADVANCED CALCULUS 3 Credits
```

A more rigorous approach to limits, continuity, and differentiation in multivariable calculus.

Prerequisite: MATH 320
Text: Advanced Calculus, 3rd Ed. by R. Creighton Buck, McGraw-Hill Publishing Company

CONTENT

CHAPTER/SECTION

TOPIC

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Chapter 2
2.1
2.2
2.3
2.4
2.5
2.6
2.7

Chapter 3
3.2
3.3

SETS AND FUNCTIONS
Introduction
R and R^{n}
Distance
Functions
Topological Terminology
Sequences
Consequences of the Monotonic-Sequence Property Compact Sets

CONTINUITY

Preview
Basic Definitions
Uniform Continuity
Implications of Continuity
Limits of Functions
Discontinuities
Inverses for Functions of One Variable
Differentiation
Mean Value Theorems and L'Hospital's Rule Deriuatives for Function on Rn^{n}

Mathenhatics COURSE CONTEAT

An introduction to the use of mathematics to form models of real world situations as an aid in solving problems related to them. Particular emphasis will be given to the use of graph theory as a modeling tool and to the proving of theorems.

PREREQUISITES: MATH 220. No knowledge of techniques for proving theorems or

 of graph theory is required.TEXT: Graphs and Digraphs by Chartrand and Lesniak; Second edition, Wadsworth and Brooks/Cole, Inc. 1986. (Not required). Graphs as Mathematical Models by Chartrand; Prindle. Weber, and Schmidt, Inc. 1977 (Not required - out of print) Textbook and emphases above may vary depending on which faculty member is teaching the course.

TOPICS: Theorems and Proofs
Mathematical Models
Graphs
Graphs as Mathematical Models
Directed Graphs as Mathematical Models
Elementary Concepts of Graph Theory
The degree of a vertex
Isomorphic Graphs
Connected Graphs
Cut-vertices and Bridges
Transportation Problems
The Konigsberg Bridge Problem: An introduction to Eulerian graphs.
The Salesman's Problem: An introduction to Hamiltonian graphs Connection Problems

The Minimal Connector Problem: An introduction to trees PERT and the Critical Path Method
Games and Puzzles
"Instant Insanity"
The Tower of Ranoi
Ramsey Numbers
Matching
Digraphs and Mathematical Models
A Traffic System Problem
Tournaments
Paired Comparisions and How to Fix Elections
Planar Graphs and Coloring Problems
The Three Houses and Three Utilities Problem
A Scheduling Problem: An Introduction to Chromatic Numbers
The Four Color Problem
Graphs and Other Mathematics
Graphs and Matrices
Graphs and Topology
Graphs and Groups

Fall, 1993
G. Arnold

MATHEMATICS COURSE CONTENT

MATH 485 ACTUARIAL SCIENCE PROFESSIONAL EXAM PREPARATION II

1 credit
Prerequisite: at least corequisite of MATH 416
This course will help prepare students to take the Society of Actuaries' Professional Exam 100 . Emphasis will be given to analysis of previous exams, study of sample questions, and general test taking techniques. Grading will be credit/no credit only.

Coding Mathematical problems in FORRRAN 77. If software is made available FORIRAN 77 will be replaced with FORIRAN 90. MICROSOFI' package used. Documentation, flowcharting, arithmetic statements, formatted input/output statements, control statements, arrays, functions, recursion, decision structures, subprograms and file processing. If time permits graphics and camplex data types will also be covered.

PREREQUISITE: MATH 216 or MATH 230 or EQUIVALENT.
TEXT: $\frac{\text { FORIRAN } 77 \text { for Engineers and Scientists, Third Edition, }}{\text { Larry Nyhoff and Sanford Leestma, Macaillan Publishing Campany. }}$

CONTENT

Chapter 1 INTRODUCTION AND HISTORY You should spend at most four lectures on this chapter and an introduction to the software that will be used.

Chapter 2 PROCRAMMING DEVELOPMENT Spend at most three lectures on this chapter.
hapter 3 BASIC FORIRAN
3.1 Data + Algorithms = Programs.
3.2 Program Format.
3.3 Constants and Variables.
3.4 Arithmetic Operations and Functions.
3.5 The Assigrment Statement.
3.6 List Directed Input/Output.
3.7 (OPIIONAL) Program Composition.

Chapter 4 SIRUCIURED PROGRAMMING
4.1 Sequential Structure.
4.2 The Logical Data Type.
4.4 The IF Selection Structure.
4.5 Repetition Structure : DO Loops.
4.6 The While Repetition Structure.
4.7 The DO WHILE Statement.
4.8 (OPIIONAL) Implementing While Loops in Standard FORIRAN.
4.9 A Posttest Repetition Structure.

Chapter 5 INIRODUCTION TO SUBPROGRAMS AND MODULAR PROGRAMMING
5.1 Function Subprograms.
5.2 (OPIIONAL) Examples. May use your own examples.
5.3 Subroutine Subprograms.
5.4 (OPTIONAL) Examples. May use your own examples.
5.5 Functions and Subroutines as examples.
5.6 (OPTIONAL) The COMMON Statement.

Chapter 6 INPUT/OUIPUT
6.1 Formatted Output.
6.2 Examples - May use your own examples.
6.3 Formatted Input.
6.4 The WRITE Statement and the General READ Statement.
6.5 Introduction to File Processing.
6.6 (OPIIONAL) Examples - May use your own examples.
6.7 (OPIICNAL) Miscellaneous Imput/Output Topics.

Chapter 7 ONE DIMENSIONAL ARRAYS
7.1 Introduction to Arrays : Scripted Variables.
7.2 Iryut/Output of Arrays.
7.4 Array Processing.

Chapter 8 MULTI DIMENSIONAL ARRAYS
8.1 Introduction to Multi dimensional Arrays.
8.2 Processing Multi dimensional Arrays.

Chapter 9 DOUBLE PRECISION AND COMPLEX DATA TYPES
9.1 Double Precision Type.
9.2 (OPIIONAL) Complex Type.

Chapter 10 ADVANCED CHARACTER DATA
10.1 Character Data and operations.
10.2 The INDEX and IEN Functions.
10.3 Character Comparision.

OPIIONAL : If time permits then graphics, Chapters 11 - 13 may be covered.

This course will deal with the fundamentals of structured programming using TURBO PASCAL. Emphasis will be given to concepts such as top-down design, basic structures (sequence, decisions, loops) and the use of procedures. Variable types; text files, records and graphics will also be covered. Mathematical/scientific applications will be stressed.

Prerequisite: MATH 126, Algebra and Analytic Trigonometry or MTH 130, Advanced Algebra \& Analytic Trigonometry.

Text: Using Turbo Pascal 4.0-6.0, 2nd Edition, Julien Hennefeld, PWS-KENT Publishing Company, 1992.

CONTENT
CHAPTER
TOPIC

```
    Introduction to TURBO PASCAL
    Using the TURBO System
    More on the Elements of PASCAL
    IF-THEN-ELSE
    CHAR & STRING Data Types/Formatting Output
    FOR Loops
    WHILE LOODS
    REPEAT-UNTIL LoopS
    TEXT Files
    Introduction to Procedures
    Procedures with Variable Parameters
    Multiway Selection
    Functions
    Nested Subprograms
    One-Dimension Arrays
    Sorting and Searching
    Multidimensional Arrays and Nested Loops
    Records
    Graphics
    Include a previer of the Appendices, especially Appendix D & F
    Consider including Chapter 12 with Chapter 4
    Consider introducing the Function Random (Chapter 14) as
    an example for Chapter 13
```

Fall, 1993
Art Sherwood

COMPUTER SCIENCE COURSE CONTENT

A study of the microcomputer organization, machine language, assembly language and the set of instructions.

Prerequisite: KTH 126 , algebra \& Analytic Trigonometry or MATH 130 , Advanced Algebra \& Analytic Trigonometry.

Text: IBM $P C$ assembly Language and Programining, Second Edition, by Peter Abel, Prentice-Hall Publishing Company, 1991.

COURSE CONTENT

CHAPTER

1
2
3
4
5
6
7
) 8
11
12
13
$i 5$
19
20
23-25
9-10 Advanced Screen and Keyboard Processing Various topics used with other chapters)
is course will cover the main types of data structures including stacks, queues, deques, lists, trees, recursion, sorting and searching techniques. It will emphasize, whenever possible, examples and applications of data structures.

Prerequisite: Math 205, Structured Programming with Pascal, or knowledge of PASCAL Language.

Text: Applied Data Structures Using Pascal by Hale/Easton, D.C. Heath and Company, 1987

MATHEMATICS COURSE CONTENT

CPSC 320 COMPUTER SIMULATIONS 3 Credits
This course will cöer continuous and discrete simulations of real-life processes. The continupus system language DYNAMO and a general purpose high level programming language will be used.

Prerequisite: Knowledge of a high-layel computer languarg
Math 231
Text: None required, but material will be taken from: Introduction to Computer Simulation, by Roberts: Anderson, Deal, and Scaffer, Addison-Wesley Publishing Co., 1983
and Simulation Using Personal Computers, by Carroll, Prentice-Hall, Inc., 1987.

CONTENT

(Erom Introduction to Computer Simlation)
PART V: INTRODUCTION TO SIMULATION
Chapter 13 Levels and Rates 5 days
Chapter 14 Simulation Using DYNAMO 3 days

Chapter 15
Chapter 16
Chapter 17
PART VI:
FORMULATING AND ANALYZING SIMULATION MODELS
Chapter 18
Chapter 19
Chapter 20
Using Simulation to Analyze Simple Positive and Negative Loops
Representing More Complex Causal Relations 3 days
Introduction to Delays

Modeling the Ecology of the Kaibab Plateau	4 days
Dynanic Characteristics of Flu Epidemics	2 days
Urban Growth	2 days

2 days
2. days
(from Simulation Using Personal Computers)
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 9

Randori Numbers 4 days
Time-Orianted Sinulation 4 days
Event-Orientad simulation $\quad 4$ days
Distribution Functions 3 days
GPSS fer Perscinal Computies 2 days
REVIEN AND TESTS 5 days
Total days
45

Spring̣, 1793
6. Anol:

GATHEHITICS COURSE CORTENT

GPSC 326 COMP!JTER GRAPHICS 3 :ädite

An overaiew of graphics hardware, object oriented programming, reprisentation of curves and sirfa: Es. wire frane representation, two ably thré dimensi:rial transiormaions, projection onto the display device, hidden line removal and progranning for interartion.

Prarequisite: CPSC 215 and Hamit $3 ?$ or uonsent of iastrueto-
Text: Computer Graphirs. bi D fietun ani it. Bakro
CONTEITT

CHAPTER/SECTION

Chzptor :
Chapter 2

Chaptir 3

TOPIE

A Sur:ey of somputer Grabhies
Or:r-iem of Graphics Sustims

Dutput Pr:witios

Note: Chapter 1 - 3 shoulit be cö̀: ed quickly as an introdustion. Introduction so pacial Objects.

Chapt:r 5
Tiv-dinemzinal Transformation

Jindnwing and c!icging

Ent=racti\% Input ithors

Thr:e-dinensinrai convopt:

Thime-dinensional Representatiors
Thr:- - dimensional Transformations

Thu $=-$ dincnsional yiowing

Shading and Color Madels

CPSC 328 DISCRETE STRUCTURES 3 CREDITS

Discrete mathematics topics for Applied Mathematics and Computer Science, including: logic, sets, algorithms, recursion, combinatorics, graph theory and boolean algebra. Students cannot receive credit for both CPSC 328 and MATH 328.
Prerequisite: MATH 220, Analtical Geometry and Calculus I
r-रt: Discrete Mathematics by Richard Johnsonbaugh, th edition, Prentice Hall Publishing Co., 1997
CONTENT
CHAPTER SECTION TOPIC DAYS

Chapter 1

1.1
1.2
1.3
1.4
1.6

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.8

Chapter 3
3.1
3.2
3.3
3.4
3.0

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6

Chapter 5
5.1
5.2
5.3
'hapten 6
6.1
6.2
hapter 9
9.1
9.2
9.3
9.4
9.
sview and Tests
5

LOGIC AND PROOFS
6
Propositions
Conditional Propositions and Logical Equivalence
Quantifiers
Proofs
Mathematical Induction
THE LANGUAGE OF MATHEMATICS
Sets
Sequences and Strings
Number Systems

Relations

Equivalence Relations
Matrices of Relations
Functions

ALGORITHMS

Introduction
Notation for Algorithms
The Euclidean Algorithm
Recursive Algorithms
Complexity Algorithms
Analysis of the Euclidean Algorithm

COUNTING METHODS

Basic Principles

Permutations and Combinations
Algorithms
Generalized Permutations and Combinations
Binomial Coefficients
The Pigeonhole Principle
RECURRENCE RELATIONS 4
Introduction
Solving Recurrence Relations
Applications
GRAPH THEORY 3
Introduction
Paths and Cycles
Boolean Algebras 6
Combinatorial Circuits
Properties of Combinatorial C Circuits
Boolean Algebras
Boolean Functions
Applications

COMPUTER SCIENCE COURSE CONTENT

CPSC 350
LOGIC CIRCUIT DESIGN
3 Credits
Topics include basic logic design, commonly used codes, number representation and arithmetic, computer architecture (overview), and the study of an actual computer system.

Prerequisite: CPSC 310 or equivalent.
Text: Digital Design, Second Edition, by M. Morris Mano, Prentice-Hall 1991.
CONTENT

CHAPTER/SECTION

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.7
1.8
1.9
) Chapter 2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Chapter 3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

SUGGESTED TOPIC

BINARY SYSTEMS
Digital Computers and Digital Systems
Binary Numbers
Number Base Conversion
Octal and Hexadecimal Numbers
Complements
Binary Codes
Binary Storage and Registers
Binary Logic
bOOLEAN ALGEBRA AND LOGIC GATES
Basic Definitions
Axiomatic Definition of Boolean Algebra
Basic Theorems \& Properties of Boolean Algebra
Boolean Functions
Canonical and Standard Forms
Other Logic Operations
Digital Logic Gates
Integrated Circuits
SIMPLIFICATION OF BOOLEAN FUNCTIONS
The Map Method
Two- and Three-Variable Maps
Four-Variable Map
Five- and Six-Variable Maps
Product of Sums Simplification
NAND and NOR Implementation
Other Two-Level Implementations
Don't-Care Conditions
The Tabulation Method
Determination of Prime-Implicants

CPSC 350 Logic Circuit Design (con't)

Chapter/Section

Suggested Topic

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Chapter 6
6.1
6.2
6.3
6.4
) 6.5
6.6
6.7
6.8

Chapter 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7

COMBINATIONAL LOGIC
Introduction
Design Procedure
Adders
Subtractors
Code Conversion
Analysis Procedure
Multilevel NaND Circuits
Multilevel NOR Circuits
Exclusive-or and Equivalence Functions
MSI AND PLD COMPONENTS
Introduction
Binary Adder
Decimal Adder
Magnitude Comparator
Decoders
Multiplexers
Read-Only Memory (ROM)
Programmable Logic Array (PLA)
SYNCHRONOUS SEQUENTIAL LOGIC
Introduction
Flip-Flops
Triggering of Flip-Flops
Analysis of Clocked Sequential Circuits
State Reduction and Assignment
Flip-Flop Excitation Tables
Design Procedure
Design of Counters
REGISTERS, COUNTERS, AND THE MEMORY UNIT
Introduction
Registers
Shift Registers
Ripple Counters
Synchronous Counters
Timing Sequences
RAM
CF'SC 442 FFOGRAMMING LANGLAGE CONCEFTS 3 CREDITS

```
Topics include definition and structure of a language.
data types control structures and data flow, run time
consid'erations. interpretive languages, and lexical analysis
and parsing.
Frerequisite: CFSC 205, CFSC 215 and CFSC 310.
Text: The Anatomy of Frogramming Lanquaqes by Alice E. Fischer and Frances S. Grodzinsky Frentice-Hall, Inc , 199\%.
```

CONTENT
Chapter/Section

Sugqested Topic

Chapter 4
4.1
4.2
4.3
4.4

Chapter 5
5.1
5.2
5.3

Chapter 6
6.1
6.2
6.3

Chapter \quad a
3.1
8.2
8.3
8.4

Lhapter 9
7.1
7.2

Chepter 10
10.1
10.2
10.3
10.4

FOFMAL DESCFIFTION OF LANGUAGE
Foundations of Frogramming Languages
Syntax (Extended ENF: Syntax Diagrams)
Sernantics Extending the Semantics of a Language

FFIMITIVE TYFES
Frimitive Hardware Types
Types in Frogramming Languages
A Brief History of Type Declarations
modeling og.jects
Kinds of objerts
Flacing a Value in a Storage objects The Storage Model: Managing Storage objects

EXFFESSIDNS ANO EVAL_UATIDNS
The Frogramming Environment
Sequence Control and Communication
Expression Synta:
Function Evaluation
FUNCTIONS AND FARAMETEFIS
Function Gyntak
What Does an Argument Mean?
Higher-wrder Functions
CONTFOL STRUCTURES
Easic Control Structures
Conditional Control Structures
Iteratign
Lmplicit Iterstion

Section 10 Enrollment Trends

The following table shows the official enrollment count in the applied mathematics and actuarial science program over the last five fall semesters.

	Fall 1993	Fall 1994
Total	6	5
Freshmen	1	0
Sophomore	0	3
Junior	2	2
Senior	3	0
TBD	0	0
	Fall 1996	Fall 1997
Total	9	7
Freshmen	0	3
Sophomore	2	1
Junior	1	1
Senior	5	2
TBD	1	0

Fall 1995
6
0
3 3
$2 \quad 2$
0 1
$0 \quad 0$

Total
Freshmen
Sophomore
2
5
1

0

Over the last five years enrollment has averaged around six. Despite a fair amount of recruitment effort we have seen little increase in enrollment. The newly formed advisory committee has made several suggestions to help increase enrollment. They will be discussed in a later section.

Section 11
 Program Productivity/Cost

The data available is from the 1995-96 academic year. The data from the Office of Institutional Studies ranks programs according to teaching cost. This list is obtained by looking at all the courses required by a particular program, determining the total teaching cost per student for taking all these courses, and then dividing this figure by the number of credit hours in the program. This is the best figure for the total cost of productivity of an overall program, because it includes all the courses in a program. Out of 134 programs on campus applied mathematics ranked $60^{\text {th }}$ and actuarial science ranked $34^{\text {th }}$. This puts us close to the middle of programs. The actual cost per credit hour in the applied mathematics program was calculated as $\$ 130.79$ and the actual cost per credit hour in the actuarial science program was calculated as $\$ 155.79$. The highest cost per credit hour was $\$ 788.78$ and the lowest cost per credit hour was $\$ 58.07$. We are clearly closer to the lower end than the high end.

Section 12
 Conclusions

In this section, the twelve areas of analysis raised by the APRC manual are addressed.

i. Centrality to FSU mission

The mission statements of the department of mathematics, the applied mathematics program, and the actuarial science program were constructed and approved within the context of the overall FSU mission. These documents are both readily available.

The actuarial science program from its inception has striven to place people in an environment which prepares students for actuarial positions. In a like manner the applied mathematics program has prepared students for jobs in industry dealing with statistics, computer science and mathematical modeling as well preparing students for graduate programs. In preparing people for the everchanging world of applied mathematics, the programs have remained close to the basic Ferris tradition of preparing students to quickly become competent members of the industrial workforce. The graduate response section directly addresses this question, and it reinforces (especially in the comments) that the mission of preparation is being maintained.
ii. Uniqueness and visibility.

The actuarial science program is only one of a few in the state of Michigan and the same holds true for the applied mathematics program.
iii. Service to state and nation.

The applied mathematics program and the actuarial science program are providing a service to employers in both the state Michigan and throughout the nation.
iv. Demand by students.

According to data shown earlier in this report, the demand by students has remained constant over the last five years. Unfortunately the demand has been
rather low. Our advisory board has recommended a plan to help increase demand by students. This plan is summarized under recommendations.

v. Quality of instruction.

With regard to the instruction of students, the results of the surveys (of students, graduates, and advisory board members) are all quite clear. The student and faculty perceptions of the program and its instruction are quite high and sure to remain so as long as student preparation meets industrial demands.
vi. Demand for graduates.

The demand for graduates in applied mathematics particularly those with an emphasis in computer science or statistics has been high. Calls from employers are often received because of someone's contact with one of our graduates. The current demand for graduates is predicted to increase, due to the current economic health of the nation. The labor market analysis in a previous section attests to this point.
vii. Service to non-majors

The programs themselves do not provide, a large degree of service to nonmajors. However, there are some ways in which non-majors benefit from the existence of the programs. The early mathematics courses are shared with a number of programs and the mathematics education program shares advanced courses.
viii. Facilities and equipment.

There are presently three classrooms equipped with a computer and large screen display. These classrooms are used for computer science courses and for courses in which Derive (a symbolic algebra system) is used. At present this is an adequate number of such rooms.

The main computing facility used by the students is located in ASC 1015. It consists of fifty Pentium workstations. This more than adequate for present usage.
In addition faculty sometimes bring students to the Computer seminar room in ASC 1008 or the small computer seminar room in STR 109. The computer seminar room in ASC 1008 has thirty-five Pentium workstations and large screen projection. The small computer seminar room in STR 109 has twenty Pentium workstations and large screen display. A computer classroom would be nice at a future date. There is also a need for compiler upgrades for our CPSC courses. Our equipment holdings and facilities could be considered at least adequate for the present job of preparing students for industry.

ix. Library information resources

While many programs have a difficulty with insufficient holdings in the library, the applied mathematics and actuarial science program do not. The need for traditional library services is satisfied by the Internet and on-line searches. The lack of applied mathematics journals is however a problem for faculty.

x. Cost.

This is an area that can be difficult to quantify. One way of measuring the cost is the expense of providing instruction for students. As mentioned before, reports produced through institutional studies indicates that among all the programs at Ferris, the instructional cost of the our programs can be characterized as moderate. Another cost of the program is the day-to-day expense in providing support for the programs. The main computer laboratory is shared with all of the College of Arts and Sciences. The classrooms with computer display would be needed to teach the calculus courses even if the programs did not exist.
xi. Faculty: professional and scholarly activities.

Many of the mathematics department faculty teach in these programs. Faculty professional development occurs in the mathematics program at a number of levels. Some of our faculty attend conferences, some present papers at conferences, some publish in journals and some consult.

xii. Administration effectiveness.

The administration of these program has been divided between the applied mathematics program coordinator and the mathematics department chair. The program coordinator has primarily been responsible for recruiting students, advising students, and making contacts with employers. The department chair has been responsible for setting aside a sufficient portion of the departmental budget for the day-to-day operation of the programs and for ensuring that a suitable schedule of courses is built. The cooperation between these two individuals has been excellent, so the local administration effectiveness is very good.

Section 13
 Recommendations
 Applied Mathematics and Actuarial Science Programs

Areas of Strengths:

1. Personalized advising and instruction.
2. Program is individualized by allowing students to choose area of specialization.
3. Job market for students with computer and statistics training.
4. The technological revolution in the job market.
5. Good alternative program for pre-pharmacy and pre-optometry students.

Areas of Concern:

1. Low enrollment.
2. Lack of recruitment of "blue chip" math students.
3. The amount of course substitutions necessitated by the canceling of low enrollment classes--often to the extent that the student's final program is of questionable quality.

Future Goals:

1. Increase enrollment by a minimum of three students per year over the next five years.
2. Revise the program along the lines suggested by the advisory board.
3. Create a new recruiting brochure.
4. Review community college programs and devise articulation avenues where possible.
5. Enhance the coordination between the admission's recruiter, the program coordinator, the mathematics department chair, and the College of Arts \& Sciences academic counselors.

Recommendations (These recommendations are made in consultation with the newly formed advisory board.)

1. Rewrite the program description so that there is one applied mathematics program with a number of options. Suggested options are actuarial science, statistics, operations research, and computer science. This repackaging would be similar to what applied biology has done. It would enable recruiters and admissions people to use the appropriate key words with prospective students.
2. Actively recruit at community colleges.
3. Add an internship option.
4. Revise computer science courses in accordance with the advisory boards recommendations.
5. Revise and add statistics courses in accordance with the advisory boards recommendations.

Applied Mathematics Advisory Board Recommendations

Rick Neeley
Sam Burgess
John Scheible

Computer science courses:

1. Leave CPSC 205 and CPSC 215 as they are in terms of content but change the language of instruction to $\mathrm{C}++$ or Ada95.
2. Combine CPSC 310 and CPSC 350 into one four credit course.
3. Add a course on Algorithm Analysis and Data Structures.
4. Change the language of CPSC 150 to Visual Basic.

Statistics courses:

1. Change Math 250 from a two credit to a three credit course so the topics can be covered in more depth.
2. Add a course on Sampling Techniques.

General Recommendations:

1. Have only one major with tracks corresponding to what is now the actuarial science program and the most popular paths taken in the current applied mathematics major. Suggested tracks are actuarial science, computer science, operations research, and statistics.
2. Have an internship course so that internships are a formal option.
3. As soon as the program changes are approved launch a major recruiting drive. Aim the drive at both community college transfers and entering freshmen.
4. The drive should include visiting both community colleges and high schools.

Plan for acting on the advisory board recommendations

1. Immediately submit a plan for restructuring the programs into a single program with tracks.
2. During the Fall 1997 semester begin work on revising MATH 250, adding a Data Structures and Algorithm Analysis course, combining CPSC 310 and CPSC 350, and adding a Sampling Techniques course.
3. Submit the work mentioned in 2 sometime in the Winter 1998 semester.
4. We have already put articulation agreements in place with a number of community colleges. The chair or the applied mathematics coordinator will make recruiting trips to both community colleges and high schools during the 1997-1998 academic year.

Applied Mathematics Program (restructured to be submitted in Fall 1997)
Common Core:
CPSC 205 - 3
CPS 215 - 3
MATH 220 - 5
MATH 230 - 5
MATH 320 - 3
MATH 322 - 3
MATH 340 - 3
MATH 360 - 3

Computer Science Track:
MATH 250 - 2
CPSC 310 - 3
-CPSC 328 - 3
CPSC 442 - 3
CPSC electives 6
electives 23 (chosen from MATH, CPSC, or ISYS.)
Statistics Track:
MATH 250 - 2
MATH 314 - 3
MATH 414 - 3
MATH 416 - 3
electives 29 (from MATH, CPSC, BIOL, CHEM, or PHYS)
Actuarial Science Track:
MATH 250 - 2
MATH 314 - 3
MATH 414 - 3

MATH 416	-	3
CPS 328	-	3
MATH 385	-	1
MATH 485	-	1
ECON 221	-	3
ECON 222	-	3
INSR 243 -	3	
INSR electives	6	
electives	9 (from MATH, INSR, ECON, ACCT, or STQM)	

Operations Research Track:
CPSC 328 - 3

MATH 330 - 3
MATH 380 - 3
MATH 414 - 3
MATH 440 - 3
electives - 6 (from MATH and CPSC)
electives - 20 (from application area)

Appendix I

PROGRAM REVIEW PANEL EVALUATION

Program:

Instructions: Circle the number which most closely describes t he program you are evaluating.

1. Student Perception of Instruction

Average Score 4.33

Currently enrolled students rate instructional effectiveness as extremely high.
2. Student Satisfaction with Program

Currently enrolled students are very satisfied with the program faculty, equipment, facilities, and curriculum.
3. Advisory Committee Perceptions of Program Mk"

Advisory committee members perceive the program curriculum, facilities, and equipment to be of the highest quality.
4. Demand for Graduates

Graduates easily find employment in field.

Currently enrolled students rate the instructional effectiveness as below average. Average Score 4,17

K

Currently enrolled students are not satisfied with program faculty, equipment, facilities, or curriculum.
Average Score 4.17

,
Advisory committee members perceive the program curriculum, facilities, and equipment needs improvement.
Average Score 4,5 Graduates are sometimes forced to find positions out of their field.
5. Use of Information on Labor Market

The faculty and administrators use current data on labor market needs and emerging trends in job openings to systematically develop and evaluate the program.

The faculty and administrators do not use labor market data in planning or evaluating the program.

Profession/industry standards (such as licensing, certification, accreditation) are consistently used in planning and evaluating this program and content of its courses.
7. Use of Student Follow-up Information

Current follow-up data on completers and leavers are consistently and systematically used in evaluating this program.
8. Relevance of Supportive Courses

Applicable supportive courses are closely coordinated with this program and are kept relevant to program goals and current to the needs of students.
9. Qualifications of Administrators and Supervisors res.

Little or no recognition is given to specific profession/industry standards in planning and evaluating this program.

Average Score

Student follow-up information has not been collected for use in evaluating this program.

Average Score 4,33

Supportive course content reflects no planned approach to meeting needs of students in this program.

All persons responsible for directing and coordinating this program demonstrate a high level of administrative ability.
10. Instructional Staffing

Instructional staffing for this program is sufficient to permit optimum program effectiveness.
11. Facilities Persons responsible for directing and coordinating this program have little administrative training and experience.
Average Score 4.5 Staffing is inadequate to meet the needs of this program effectively.

Present facilities are sufficient to support a high quality program.

Present facilities are a major problem for program quality.

CURRICULUM VITAE

VACLAVKONECNY

18160 Steven Court
Big Rapids, Michigan 49307

Home Tel.: (616) 7962064
Work Tel.: (616) 5925872

PERSONAL: Born in Brest, Czechoslovakia, July 23, 1934.
Married on 1959 to Eliska Drabek.
Two children: Emma (1960) and Vaclav (1961).
U.S. citizen.

EDUCATION: M.S. (Computer Science), Central Michigan University, Mt.Pleasant (1984).
Ph.D. (Phys. \& Math Sciences), Tech. Univ., Brno (1968)
RNDr. (Doctor of Natural Sciences in Theoretical Physics),
Univ. J. E. Purkyne, Brno (1966)
M.S./ B.S. (Physics), Masaryk's University, Brno (1958)

EMPLOYMENT: $9 / 2 / 1980$ to present: Prof. in Math, Ferris State University, Big Rapids, Michigan 49307.
1976-1980: Assoc. Prof. in Math \& Physics, Jarvis Christian College, Hawkins, Texas 75765.
1973-1976: English-Czech Scientific Translator, Potoky, Gottwaldov
Czechoslovakia.
1970-1973: Assoc. Prof. in Math, Jarvis Christian College, Hawkins, Texas 75765.
1970 (6 months): Post-Doctorate Fellow in Math, University of Saskatchewan, Saskatoon, Sask., Canada.
1964-1970: Lecturer in Math, University of Khartoum, Sudan. 1958-1964: Lecturer in Physics, Technical University, Brno, Czechoslovakia.
1952-1953: Lab. Assistant, Physics Lab., Research institute, Gotwaldov, Czechoslovakia.

COMPUTER EXPERIENCE: Scientific Programmer during Summers 1982 \& 1981
at York University. Texas College of Osteopathic Medicine (Summer 1980), Howard Univ. (Summers 1978 \& 1977). I.B.M -San Jose Summer 1973. Used mainly Fortran, Pascal and Assembly languages

PUBLICATIONS: (See the enclosed list of publications). In the following fields: Diff. Equations, Combinatorics, Solid State Physics, Optics, Mechanics and Problem Solving.

PROFESSIONAL MEMBERSHIP: The Mathematical Association of America.

Vaclav Konecny

LISTOF PUBLICATIONS

ARTICLES:

1. "A Contribution to Lommel's Problem for a Circular Aperture". Czech.J. Phys., Vol. B 15, 1965
2. "On the Solution of the Quasilinear Dynamic Equation of Elasticity"; Czech.J. Phys., Vol. B 17, 1967
3. "A Note on Unloading Boundary for Pulse Loading", J.Appl.Phys., Vol. 39, N0.3, 1968
4. "A Recursive Formula for the Number of Partitions of an Integer N Into m Unequal Integral Parts", Math. Magazine, Vil.45, No.2, 1972
5. "On the first Law of Friction", Amer. J. Phys., April, 1973
6. "On Maximum Force of Static Friction", Amer. J. Phys., May, 1973
7. "Possible Use of Electric Fields in Laser Writing", I.B.M. Report", 1973
8. "The Determination of the Orientation of Cubic Crystals from Measured Sound Velocities", Phys. Stat. Sol. (a) 52, 29, 1979
9. "Curve Fitting of Averaged Data", Co-author: Peter R. Gwilt, Math. Magazine, Jan, 1984

PUBLISHED SOLVED PROBLEMS AND PROPOSALS:

1. "Inverse Functions", Math. Mag., Vol.44, No.4, 1971, (\#775)
2. "Arithmetic-Geometric Mean Inequality", Math. Mag., Vol.45, No. 3,1972 (k807)
3. "Tangents of Inverse Functions", Math. Mag., Vol.45, No,4, 1972, (\#814)
4. "Euler's ф Function", Math. Mag., Vol.45, No.5, 1972, (\#823)
5. "Q 532", Math. Mag., Vol.45, No. 5, 1972
6. "A Relation Between Two Angles", Math. Mag., Vol.46, No.1, 1973, (if825)
7. "Proposal \#5878", Amer. Math. Monthly, Vol.79, No.9, 1972
8. "A Well-known Triangle Property", Math.Mag., Vol.46, No.2, 1973, (\#837)
9. "A Problem of Meeting", Math.Mag., Vol.47, No.2, 1974, (\#*868)
10. "Irrational Sices", Math.Mag., Vol.48, No.3, 1975, ("901)
11. "Interchanged Digits", Math.Mag.; Vol.48, No.4, 1975, (\#908)
12. "Coplanar Points", Math.Mag., Vol.50, No.3, 1977, (tr962)
13. "Elliptical Tangents", MONTHLY, Vol.95., No.7, 1988, (E1364)
14. "Nonintuitive Exponentials", Math.Mag., Vol.62, No.1, 1989 (proposal 1313)
15. "Generalization of Gergonne Point", Math.Mag., Vol.62; No.2, 1989 (pr 1320)
16. "Quadrilateral Subdivision", Math. Mag., Vol.64, No.4., 1991, (\#1354)
17. "Concurrent Cevians", Crux Mathematicirum, Vol.18, No.4, 1992 (pr 1731)
18. "Graphs of Exponential and its Inverse", Crux M., Vol.18, No.5, 1992 (pr 1744)
19. "Problem \#1683 : , Crux M., Vol.18, No.8, 1992

Vaclav Konecny

LIST OF PUBLICATIONS (We list only the problem numbers, Journal, and the Year)

* means Unsolved problem before

$\begin{aligned} & \text { 20. \# } 1731^{*} \\ & \text { 21. \# } 1744 \end{aligned}$	Crux (1993), Proposal. Crux (1993), Proposal.
22. \# 1759	, Crux (1993)
23. \# 1792	Crux (1993)
24. \# 1887	Crux (1993), Proposal
25. \# 1930	Crux (1994), Proposal
26. \# 1860*	Crux (1994)
27 \# 1870*	Crux (1994)
28. \# 1872*	Crux (1994), Comment
29. \# 1887	Crux (1994)
30. \# 21	Math Horiz. (1995) , Proposal
31 \# 1461	Math Mag. (1994), Proposal
32. \# 2035	Crux (1995)
33. \# 2045	Crux (1995)
34. \# 1960	, Crux (1995)
35. \# 2035	, Crux (1995), Proposal
36.\# 2045	Crux (1995), Proposal
37. \# 1960	Crux (1995)
38. \# 1981	Crux (1995)
39. \# 1461	Math. Mag. (1995), Proposal
40. \# 2034	, Crux (1995), Coauthor
41. \# 46	Math. Horiz (1996)
42. \# 2035	Crux (1996), Proposal
43. \# 2045	Crux (1996), Proposal
44. \# 52	Math Horiz. (1966) Proposal
45. \# 2077	Crux (1996)
46. \# 2183	Crux (1996), Proposal
47. \# 68	Math Horiz. (1997) , Proposal
48. \# 2205	Crux (1997), Proposal
49.\# S3	Math Horiz (1997), Proposal
50.\# 68	Math Horiz. (1997), Solution of my proposal.
51. \# 87	Math Horiz. (1997)

John C. Hansen
19378 Golfview Dr.
Big Rapids, MI 49307

Home Phone: (616) 796-7999 E-mail: hansen905@aol.com Office Phone: (616) 592-2565 E-mail: jhansen@art01.ferris.edu

Education

B.A.	Mathematics	University of Miami	1968
M.S.	Mathematics	Ohio University	1970
Ph.D.	Computer Science	Michigan State University	1974

Full-time Academic Experience

Instructor
Assistant Professor
Assistant Professor
Associate Professor
Associate Professor
Professor
Professor

Central Michigan University	$8 / 72-6 / 74$
University of Missouri-Rolla	$8 / 74-8 / 76$
University of Michigan-Flint	$8 / 76-6 / 79$
Xavier University	$9 / 79-8 / 82$
Central Michigan University	$8 / 82-5 / 85$
Central Michigan University	$6 / 85-6 / 92$
Ferris State University	$7 / 92-$

Administrative Duties

Chairman
Department of Computer Science
Central Michigan University
8/83 to 6/85
Director
Pearce Hall Computer Center
Central Michigan University
8/82 to 6/85
Chair
Department of Mathematics
Ferris State University 5/15/97 to present

Industrial Experience

I have done a fair amount of consulting. During the times I have had nine month appointments I have usually worked full time in industry during the summer.

Areas of Interest

Software Engineering, Object-Oriented Design, Risk Analysis, Applied Statistics, Artificial Intelligence, Cryptography, Formal Language Theory, Data Base Design, Operating Systems

Professional Affiliations

ACM (Association for Computing Machinery)
IEEE (Institute of Electrical and Electronics Engineers)
ASA (American Statistical Association)
MAA (The Mathematical Association of America)

Research Activities

"Algebraic Properties of Processes", presented at the 1974 Computer Science Conference, Detroit, MI., February 1974.
"Structural Properties of Processes", Technical Report TR-02, College of Engineering, Michigan State University, 1974. (This is my thesis. The Department published it as a technical report)
"A Process Decomposition Theorem", Congressus Numerantium, Vol. 14, pp. 401-404, February 1975.
"Some Applications of a General Theory of Digraph Measures", Proceedings of the 1975 International Symposium on Multiple Valued Logic, pp. 262-276, May 1975.
"Correcting for Guessing on Multiple-Choice Tests", presented at the Fifth Manitoba Conference on Numerical Mathematics and Computing, October 1975. (with E.A. Hansen)
"A Program-Like Definition of Processes", presented at the Fifth Manitoba Conference on Numerical Mathematics and Computing, October 1975.
"Self-Modifying Systems", Congressus Numerantium, Vol. 16, pp. 351-374, October 1975 (with K. Marse) "The Learning Problem for Conversational Artifacts", Proceedings of the Fourth Texas Conference on Computing Systems, pp. 1B-4.1 to 1B-4.4, November 1975.
"Computational Models of Learning", Proceedings of the Fourth Texas Conference on Computing Systems, pp. 1B-3.1 to 1B-3.6, November 1975. (with A.R. DeKock and K. Marse)
"A Model for the Correction for Guessing on Multiple-Choice Tests", SIGSOC Bulletin, Vol. 7, pp. 24-28. (with E.A. Hansen and F.L. Schmidt) Winter 1976.
"The Twist Group of a Digraph", presented at the Seventh Southeastern Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, Louisiana, February 1976.
"INTERPLOT - An Interactive Graphics Software Package", Presented at the Seventh Manitoba Conference on Numerical Mathematics and Computing, September 1977. (with E.A. Hansen and K.H. Derus)
"Integrating Team Dynamics and On-The-Job Training into the Undergraduate Program", presented at the Fifth Annual Mountain Regional Computing Conference, Albuquerque, New Mexico, October 1977. (with K.H. Derus)
"FACTOR: A Special Purpose Computer for Factorization of Very Large Numbers", presented at the Fifth Annual Mountain Regional Computing Conference, Albuquerque, New Mexico, October 1977. (with K.H. Derus)
"Interactive Building of Models of Problem Solving Behavior", presented at 1978 ACM Computer Science Conference, Detroit, MI., February 1978. (with H.M. Braunstein)
"Integrating a Mini Computer into the Undergraduate Curriculum", presented at the 1978 ACM Computer Science Conference, Detroit, MI., February 1978. (with H.L. Reif)
"Logics without Logical Operators", presented at the $8^{\text {th }}$ Manitoba Conference on Numerical Mathematics and Computing, October 1978. (with K.H. Derus)

John C. Hansen - Page3
"Computer Crime", presented at 1978 MACUL Conference, Flint, MI., June 1978.
"Team Dynamics and the Undergraduate Curriculum", SIGCSE Bulletin, pp. 28-29, December 1978. (with E.A. Hansen and K.H. Derus)
"Logics of Truth and Dispositions and Multiple Truth Values", SIGACT News, Vol. 11 No. 2, pp. 30-35, Fall 1979. (with K.H. Derus)
"Models of Assault on Medical Information Operating Systems", Proceedings of the Hawaii International Conference on Systems Sciences-13, pp. 308-315, January 1980. (with K.H. Derus and E.A. Hansen)
"Crimes Against Computer State Space", The Printout, pp. 22-24, February 1980. (with E.A. Hansen and K.H. Derus)
"Simulation of the Effect of Acid Rain on Lake Phenomena", Proceedings of the Hawaii International Conference on Systems Science-14, pp. 937-944, January 1981. (with E.A. Hansen, K.H. Derus and L.J. Latimore)
"Comparing Survival Data", Proceedings of the Hawaii International Conference on Systems Sciences-14, pp. 168-179, January 1981. (with E.A. Hansen and P.S. Gartside)
"Personal Computers in the Undergraduate Curriculum: An Example", SIGCSE Bulletin, pp. 11-14, Vol. 14, No. 3, September 1982. (with J.P. Keish)
"Computers in the Laboratory", presented at the Laboratory Professionals of Michigan Spring Seminar 83, Flint, MI., April 1983.
"Using Off-the-shelf Microcomputers in Psychological Experiments", Proceedings of MEDCOMP-3, October 1983. (with H.M. Wall, L.J. Latimore, and W.B. Reed)
"Some Design Considerations for a "C" Source Code Pretty Printer", SIGSMALLPC NOTES, May 1985, pp. 16-22 (with Brad Sands)
"Reasonably Priced Compilers and Interpreters for the IBM-PC and PC Compatibles", SIGPLAN Notices, April 1986, vol. 21 number 4, pp. 67-69 (with J.P. Kelsh)
"A Simple Virtual Machine", SIGSMALL/PC NOTES, February 1987, vol. 13 number 1, pp. 11-15 (with J.P. Kelsh)
"Indentation Styles in C",SIGSMALLPC NOTES, August 1987, vol. 13 number 3, pp. 20-23 (with Roger Yim)
"Pixel Preference", Proceedings of the 1988 Computer Science Conference, February 1988, pp. 88-94 (with H.M. Wall and G.L. VanMeer)
"Undergraduate Compiler Construction: Compiler Writing by Example", Interface: The Computer Education Quarterly, Spring 1989, (with Roger Yim)
"Graphic and Object-Oriented Design Using HyperCard", Proceedings of the 23rd Small College Computing Symposium, April 1990. (with Roger Yim and Bryan Monroe)
"Software Engineering Training: Industrial and Academic Cooperation", presented at the Second Great Lakes Computer Science Conference, October 17-19, 1991 at Kalamazoo, Michigan.(with Roger Yim Lee)

Panel: "The Impact of Machine Learning on Expert Systems", ACM Computer Science Conference, Feb. 16-18, 1993 at Indianapolis, Indiana.
"Success with a Graduate Software Engineering Program: A Nontraditional / Interdisciplinary Program" , presented at the $15^{\text {th }}$ Annual Conference of the Association for Integrative Studies, Oct. 7-10, 1993 at Detroit, Michigan (with Roger Yim Lee)
"Visual Object-Oriented Programming Using Delphi", proceedings of $14^{\text {th }}$ Annual International Conference of the Association of Management, Aug. 2-6, 1996 at Toronto, Ontario, Canada.
"Models of Attack on Computer Systems and Chaos Theory", proceedings of $15^{\text {th }}$ Annual international Conference of the Association of Management, Aug. 6-9, 1997 at Montreal, Quebec, Canada.

Grant

NSF Grant: CSI-8552113 High Resolution Computer Graphics and Image Processing Facility \$14,612

Abstract

Book "Software Engineering: A Project Oriented Approach" with C.D. Sigwart and G.L. VanMeer; Franklin, Beedle \& Associates, 1990, ISBN 0-938661-27-2

Other

Referee 1976-1979 NCC (National Computer Conference), Referee 1978 ACM, Referee HICSS-13 ($13{ }^{\text {th }}$ Hawaii International Conference on Systems Science), Session Chair HICSS-14, Referee HICSS-17, Referee HICSS-19, Referee 1990 ACM Computer Science Conference Member of the Advisory Board, "Computers in Society", Annual Editions ($1^{\text {st }}$ to $4^{\text {th }}$ Editions) Named Best Boss in Mecosta County 1993 - Best of Mecosta County People's Choice Awards.

Courses Taught

Computer Science I, Computer Science II, Pascal, Ada, FORTRAN, BASIC, COBOL, C, C++, File Manipulation, Assembler, Data Structures, Computer Organization, Discrete Structures, Systems Programming, Operating Systems, Data Base Design, Logic Circuit Design, Programming Languages, Compiler Construction, Formal Languages, Switching Theory, Automata Theory, Artificial Intelligence, Advanced Computer Organization, Advanced Software Design and Development, Software Engineering, Principles \& Applications of Software Design, Software Generation \& Maintenance, Graphics, Cryptography, Intermediate Algebra and Trigonometry, Pre-Calculus Mathematics, Calculus III \& III, Statistics for the Life Sciences, Simulation, Mathematical Statistics I and II, Quantitative Applications in Decision-Making, Operations Research, Probability, Linear Models

CURRICULUM VITAE

Personal: Dr. Lakshmi Mukundan
Associate Professor of Mathematics
Ferris State University
Big Rapids, MI 49307

Phone: Home: (616) 796-2703

 Office: (616) 592-2567
 Education: Ph. D. (1991) North Carolina State University, Raleigh, NC.Applied Mathematics with minor in Electrical Engineering.M. Phil. (1982-84, Part-Time) Madras University, India.Mathematics with Dissertation on Monotone Approximation.
M. Sc. (1968) Madras University, India.
Mathematics. Optional Subjects: Complex Variables \& Topology.
B. Sc. (1966) Madras University, India.
Mathematics with Ancillary Subjects: Statistics \& Physics.
Employment: 1996 - Present: Associate Professor of MathematicsFerris State University, Big Rapids, MI.
1991-1995 Assistant Professor of Mathematics
Ferris State University, Big Rapids, MI.
1986-1991: Teaching / Research Assistant, North CarolinaState University, Raleigh, NC.
1980-1985: Professor of Mathematics, Queen Mary's CollegeMadras, India.
1972-1980: Assistant Professor of Mathematics, Queen Mary'sCollege, Madras, India.
1970-1972: Assistant Professor of Mathematics, GovernmentArts College for Women, Kumbakonam, Madras, India.
Computing Languages: Basic, Pascal, and Fortran.
Experience: Computer Algebra Systems: Derive and Matlab.

Publications:	C. T. Kelley and L. Mukundan: Convergence Analysis for the Harmonic Balance method, Journal of Nonlinear Analysis, Theory, Methods \& Applications, Vol. 20, No. 4, pp. 365-380, 1993.
	D. E. Stoneking, R. J. Trew, and L. Mukundan: Simulation of the Variation and Sensitivity of GaAs MESFET Large-Signal Figures of Merit Due to Process and Bias Parameters, Proceedings IEEE/ Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, 1989, pp 228-236.
Professional	Society of Industrial and Applied Mathematics. Memberships:Mathematical Association of America. Michigan Section of Mathematical Association of America. Michigan Education Association.

Conferences: Presented Hands-on Sessions on Probability on March 11, 1995 at " Math, Science, Technology Access for All " Conference, organized by Mecosta Osceola Intermediate School District.

Equity Within the Classroom V - Graduating Minority Students Conference, March 24-25, '95, Lansing.

Equity Within the Classroom IV - Graduating Minority Students Conference, March 25-26, '94, Lansing.

Presented a talk on " Women and their Issues - Around WorldWith reference to India', March 3, '94, under the auspices of Forum for the Healing Racism, Big Rapids.

Equity Within the Classroom III- Graduating Minority Students Conference, March 26-27, '93, Lansing.

Fourth Annual Michigan Conference on College Mathematics: Calculus in Transition, March 23, '93, at University of Michigan, Dearborn, MI.

Assignments At Ferris:

Given a contributed talk in the Tenth Annual South Eastern Atlantic Regional Conference on Differential Equations, Nov. 17, 1990 at Virginia Polytechnic Institute and State University, Blacksburg, VA.

Teaching

Mathematics 110/111	Fundamentals of Algebra
Mathematics 115/121	Intermediate Algebra
Mathematics 116	Intermediate Algebra \& Numerical Trig.
Mathematics 120/124	Trigonometry
Mathematics 125/130	Adv. Algebra \& Analytical Trig.
Mathematics 126	Algebra \& Analytical Trig.
Mathematics 122/128	Mathematical Analysis for Business I
Mathematics 135/133	Calculus for Life Sciences
Mathematics 162	Applied Algebra \& Trigonometry 2
Mathematics 231/220	Analytical Geometry \& Calculus 1
Mathematics 232/230	Analytical Geometry \& Calculus 2
Mathematics 234/320	Analytical Geometry \& Calculus 3
Mathematics 241/340	Numerical Methods/Analysis
Mathematics 250	Biostatistics
Mathematics 260	Statistics for Life Sciences
Mathematics 314	Probability
Mathematics 322	Linear Algebra
Mathematics 414	Mathematical Statistics 1
Mathematics 385	Prof. Actuarial Exam 100

Non Teaching

Passed the Actuarial Science Examination 100, Feb. '95 and Examination 110, May, ' 95 conducted by the Society of Actuaries.

Assisted in Registration for Fall '92, Spring '93, Fall '93, and Fall '94.

Recording Secretary for Department meetings during Winter '92-'93 and Spring '93.

Advisor for Pre-Science students during Fall '93, Winter '94, Fall '94, Winter '95, and Fall '95.

Member of the team: ' Diversity Counts! Project '

Participated in International Festival - April '93 and April '94, and April ' 95 , organized by Center for International Education, Ferris State University.

Committee

 Service :Department Planning Committee member.

Department Faculty Development Committee member.
Applied Mathematics Committee member.
Mathematics Education Committee member.
Statistics Committee member.

Text Book and Course Outline Committee member for the following Courses: Math 120, 130, 322, 324, 340, and 380 during Fall '92, Winter '92-'93, and Spring '93.

Text Book and Course Outline Committee member for the following Courses: Math $130,220,230$, and 320 , during Fall '93, Winter '94, Fall '94, Winter '95, and Fall '95.

Member of College of Arts and Sciences Sabbatical Leave Committee for 1994-1995, and 1995-96.

Chair of College of Arts and Sciences Sabbatical Leave Committee for 1995-1996.

Member of the Advisory Committee and Conference Handbook Committee for the ' Math, Science, Technology Access For All ' Conference, March 1995, organized by Mecosta Osceola Intermediate School District.

Member of College of Arts and Sciences Promotion Committee for 1996-1997, and 1997-98.

Department of Mathematics Ferris State University Big Rapids, MI 49307 616-592-2574

17325 Outer Drive Big Rapids, MI 49307 616-796-0362

Education:

Ph. D. in Mathematics (1974)
Michigan State University
East Lansing, Michigan
Title of the Doctoral Dissertation: The Structure of the Generalized Center and Hypercenter of a Finite Group.
Major Professor: Dr. W.E. Deskins Area of Specialization: Abstract Algebra
M.S. in Mathematics (1959)

Agra University
Agra, India
B.S. in Mathematics, Physics, and Chemistry (1957)

Agra University
Agra, India

Research Papers:

1. The influence on a finite group of its permutable subgroups, Canad. Math. Bull. 17 (1974), 159-165.
2. Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1975), 77-83.
3. Generalized center and hypercenter of a finite group, Proc. Amer. Math. Soc. 58 (1976), 13-21.

Fellowships and Grants:
Received Agra University Fellowship for two years in M.S. and Government Scholarship for two years in B.S.

Employment:

1970 - Present	Assistant Professor (1970-78)
	Associate Professor (1978-84)
	Professor (1984-Present)
	Ferris State University
	Big Rapids, Michigan
1965-1970	Graduate Teaching Assistant
	Michigan State University
	East Lansing, Michigan
1959-1965	Assistant Professor of Mathematics
	S.M. College, India
	U.P.A. University, India
	M.N.R. Engineering College, India

I was a visiting professor at the University of Pittsburgh for the summer of 1978, and taught two courses, one on Number Theory and the other on Abstract Algebra.

Professional Meetings:

October, 1987	Michigan Engineering College/Community College Liason Comittee Jackson Community College
October, 1985	Jackson, Michigan Michigan Engineering College/Community College Liason Committee Kalamazoo Valley Community College
August, 1981	Kalamazoo, Michigan American Mathematical Society (summer meeting) University of Pittsburgh Pittsburgh, Pennsylvania

Teaching Assignments:

MTH 090	Fundamentals of Mathematics
MTH 111	Fundamentals of Algebra
MTH 116	Data Processing Mathematics
MTH 121	Intermediate Algebra
MTH 124	Trigonometry
MTH 125	Advanced Algebra and Analytical Trigonometry
MTH 128	Mathematical Analysis for Business
MTH 129	Calculus for Business
MTH 133	Calculus for the Life Sciences
MTH 161	Applied Algebra and Trigonometry 1
MTH 231	Analytical Geometry and Calculus 1
MTH 232	Analytical Geometry and Calculus 2
MTH 233	Analytical Geometry and Calculus 3
MTH 234	Analytical Geometry and Calculus 4
MTH 322	Linear Algebra
MTH 421	An Introduction to Abstract Algebra

Non-Teaching Assignments:

Chairperson of the College of Arts and Sciences PreEngineering Curriculum Committee from 1984 to 1990.

Member of various departmental committees (past and present) including Tenure, Pre-Engineering Curriculum, Applied Mathematics Program, Workload, and Departmental Planning Committees.

Currently responsible for the course outlines, textbook selections, and proficiency tests for MTH 133 and MTH 421 . Previously responsible for these tasks for MTH 421 and MTH 431. Member of several other course committees in the past.

Active involvement in the mathematics department's faculty searches, semester conversion, and Actuarial Science degree program development.

Fobert N. McCull ough 15145 180th Avenue Eiq Fapids. Michiqan

49307
(616)-796-3986

Eduニation:

Additional graduate work, 1978 - 1979 West Virginia College of Graduate Studies Major: Industrial Engineering and Systems Analysis GFA: 4.00
M.S. degree, 1971

Michigan State University
Major: Mathematics GFA: 3.90
E.S. degree, 1970

Michigan State University Major: Mathematics GFA: $\quad 3.50$

Employment:

College teaching, Fall, 1981 to present Ferris State University Department of Mathematics

College teaching, Winter, 1980-81 to Summer, 1981 Weit Virginia Colleqe of Graduate Studies Management Department

College teaching, Fall, 1974 to Summer, 1981 West Virginia State College Department of Mathematics

Computer operations, Summer, 1975 to Summer, 1974 Oldsmobile - Main Flant

Gollege teashirig, Winter, 1972-7E to Summer, 1973
Jackson Community College
Department of Mathematices
Bookkepper ard Treasurer, Spring, 1972 to Fall, 1972
LeConte Lodge
Colleqe teachirig. Fall, 1970 to Winter, 1972
Michigan State University
Department of Mathematics

The Wright Sturf, UMAP Journal, Summer, 1992, pp. 115-1:2 and cover

Wright or, Science News, December 14, 1991, p. 387
Mathematics for Data Frocessing
William C. Brown Publishers; 1988
At-Home play for preschoolers (Photo), Qffspring, 1988: No. 2, p. 9

Numerous reviews in science Books films including:
The Fullness of Space by Gareth Wynn-Williams, publication pending

A Spacefaring Nation by Martin Collins and Sylvia Fries, publication pending

Colliding Galaxies: The Universe in Turmoil by Earry Farker, March/April, 1991, p. 38

The First Steps in Space Exploration by Films for the Humanities, Inc., Sept/Oct, 1990 p. 76

Flight to the Moon by Films for the Humanities Sept/0ct, 1990 p. 76

Computer - A Child's Play by Dharma Rajaraman Jan/Feb, 1990 p. 144

Mathematics by GFN, Jan/Feb, 1990 p. 154
Discovering Science on your Apple II by John Fellini, March/April, 1989 p. 243

Smart Apples: 31 Artificial Intelligence Experiments with the Apple II, by Delton Horn March/April, 1989 p. 9

Space Shuttle After Flight Reports, Vol. S, by Fieon Enterprises, Sept/Oct, 1988, p. 59

Larousse Astronomy by fhillippe de la Cotaderiere, Sept/0ct, 1987, p. 13

Is Anybody Out There? by NOVA, Sept/Det, 1987, p. 52

New Worlds: In Search of the Planets by Heather Couper and Nigel Henbest, April/May, 1987

The Basics: Wonder, Discovery and Experience (Photo), Qffspring, 1987: No.1, p. 6

```
NASA Paid to Save Satellite, Detroit Free Fress, 9/13/85
```

Russians Not First, Astronomy, Sept, 1983 p. 33
Starlight, a weekly column on astronomy and space exploration, Cross Lanes Record, 43 articles, 1975

Awe-Inspiritig sight, Charleston Daily Mail, July 16, 1975

Alativities:
Society for Industrial and Applied Mathematics (SIAM)
Active member
Presentation given at ICIAM conference in 1991
National Air and Space Museum (NASM)
Fegional Resource Ferson
Approximately 110 talks given on space exploration/aeronautics; 1981-1992

Michigan Association of Computer Users in Laarning (MACUL) Active member
Five presentations given, 1988-1992
Mathematical Association of America (Mi. Section) (MAA)
Active member
Two presentations given, 1990-1992
Science Books \& Films
Active reviewer of science books/videos, 1986-1992
William C. Erown Publishers
Active reviewer of mathematics/computer texts, 1988-1992
Eig Rapids Academic Boosters
Active member
Three Summer Academy classes taught, 1987-1992
Erookside Elementary Science Olympiad Team Coach, 1991-92

Eiq Rapids Middle School Mathcounts Team
Coach, 1992-93

Horors:

National Honor Society, $1965-1966$
Honors College, Michigan State University, 1968 - 1971
Member, Pi Mu Epsilon, 1968 - 1992

Member, Fhi Eeta kiappa, 1969-1992

Finalist, FSU Distinguighed Teaching Award, $19 日 4$

Finalist, MAGE Distimguished Teaching Award, 1991 - 1992
"A Comparison of Russian and American Space Shuttle Programs", Suminer, 1984, Houston, Texas
"Simulation of Variable Star Behavior", Sabbatical, Spring, 1988
"Using NASA Spacelink", FSU Mathematics Faculty Development, 1990, 1991 and 1992
"A Study of Second-Generation Tomato Plants from Space-exposed Seeds", FSU Research Grant, 1991
"Software and Development of a Manual for Karmarkar's Algorithu", FSUJ Faculty Development Grant, 1992

Special FEU Assignments:
Advisor, Fre-engineering students, 1981-1992
Taught Microcomputer Seminar for FSU faculty and staff, 1982 - 1984

Coordinator for Math 400, CSC 315, CSC 320 and CSC 328, 1992 - 1992

Mathematics Department Math 140 Committee, 1982 - 1988 Chairperson, 1982-198日

Mathematics Department Computer Committee, 1983-1992
Arts and Sciences Computer Committee, 1984-1992
Arts and Sciences Curriculum Committee, 1988 - 1990
Mathematics Departinent Faculty Search Committee, 1990-1991, Co-chairperson

Mathematics Department Faculty Travel Committee, 1991
Mentor for new faculty, 1987-1992
Arts and Sciences Faculty Support Committee, 1989-1992
Chairperson, 1991-1992
Secretary, 1990-1991
Arts and Sciences Liaison Committee, 1990-1992
Advised five Independent Study students in Math 499, the most recent being in 1992

RESUME
 GLEN E. LOBO

OFFICE ADDRESS

Department of Mathematics
Ferris State University
Big Rapids, MI 49307
(616) 592-2302

Email: yb80@music.ferris.edu

HOME ADDRESS

521 Fuller Avenue
Apt. \#304A
Big Rapids, MI 49307
(616) 796-1194

EDUCATION

ABD	Mathematics	1990	U.W.-Milwaukee
M.S.	Mathematics	1987	U.W.-Milwaukee
M.Sc. (Honors)	Mathematics	1985	I.I.T. Kharagpur, India
B.Sc. (Honors)	Mathematics	1983	I.I.T. Kharagpur, India

Ph.D. Thesis (proposed) An Antenna-Radiation Boundary Value Problem for Maxwell's Equation. M.Sc. Thesis Free Convection Flow Formation past a Vertical Plate

TEACHING EXPERIENCE

Graduate Teaching Assistant 1985-1991 U.W. - Milwaukee
Duties: Teaching with full responsibility courses in Basic Algebra, Trigonometry, Calculus for non-science majors and Calculus for science majors.

Conducting with full responsibility the Computer Laboratory component of Numerical Analysis, a junior level Mathematics course.

Assisting the Department at Late registration.
Assisting the Department in organizing Mathematics Colloquiums.
Assisting the Department Systems Manager in maintaining the Computer facilities in the Department.

Assistant Professor
1991 - Present
Ferris State University

DUTIES AT FERRIS STATE UNIVERSITY FROM 1991 TO PRESENT

Teaching

Courses taught: Fundamentals of Algebra (Math 110)
Intermediate Algebra (Math 115)
Trigonometry (Math 120)
Mathematical Analysis for Business (Math 122)
Advanced Algebra and Analytical Trigonometry (Math 130)
Calculus for the Life Sciences (Math 135)
Analytical Geometry \& Calculus I, II, III (Math 220, Math 230, \& Math 320)
Linear Algebra (Math 322)
Differential Equations (Math 330)
Operations Research (Math 360)
Advanced Calculus (Math 450)

Programming in BASIC (CPSC 150)
Computer Science I (CPSC 205)
Scientific Programming with Fortran (CPSC 244)

Committee Work, Advising, and Other Duties

Department

Coordinator Applied Mathematics Program 1992 - present
Actuarial Science Program 1992 - present

Chair Applied Mathematics Committee 1992 - present
Planning Committee 1994 - present
Member Applied Mathematics Committee 1991 - present
Planning Committee 1992 - present

Education Assessment Committee 1993 - present
Math 130,220, 230, 320 Committee $\quad 1992$-present
Math 135 Committee 1994 -present
CPSC 244 Committee 1992 - present
Department Recording Secretary 1994-1995

College	
Member	Planning Committee
1993- present	

Advising

Advisor 1992-1993 Pre-Pharmacy

Professional Activities

Member	Mathematical Association of America	1991 - present
	National Education Association	1991 - present
Michigan Education Association	$1991-$ present	

Conferences 1991-1992 College Mathematics: Teaching, Technology, and Applications Equity Within the Classroom: Graduating Minority Students

1992-1993 Equity Within the Classroom: Graduating Minority Students Mathematical Association of America: Tri-Section Meeting

1993-1994 A Day at Alverno College: Teaching and Assessing Student Abilities Calculus in Context: Introductory Workshop (Funded by the NSF)

I was invited to attend Calculus in Context: Training Workshop (Funded NSF) in June 1994, but I had to decline the invitation due to my teaching commitment at Ferris.

Recognized for suggestions made for the text:
QBASIC: With an Introduction to Visual Basic for Engineering, Mathematics, and the Sciences - David I. Schneider

- Second Edition, Dellen Publications

References

Dr. John C. Hansen, Head Department of Mathematics
Ferris State University
Big Rapids, MI 49307
(616) 592-2565

Dr. R. K. Agrawal, Professor
Department of Mathematics
Ferris State University
Big Rapids, MI 49307
(616) 592-2574

Mr. Philip Stich, Assistant Professor
Department of Mathematics
Ferris State University
Big Rapids, MI 49307
(616) 592-2569

Dr. Gene W. Arnold, Professor
Department of Mathematics
Ferris State University
Big Rapids, MI 49307
(616) 592-2571

Mr. Roy M. Gifford, Assistant Professor
Department of Mathematics
Ferris State University
Big Rapids, MI 49307
(616) 592-2579

RÉSUMÉ

GENE W. ARNOLD

Address-Home: 2346019 Mile Road
Big Rapids, MI 49307

School: Department of Mathematics
Ferris State University Big Rapids, MI 49307

Telephone-Home: 616-796-3824 School: 616-592-2571 Fax: 616-592-2627

E-Mail: YE50@MUSIC.FERRIS.EDU or GENEARNOLD@AOL.COM

Educational Background: B.A. in Mathematics, 1963 -- Ball State University, Muncie, Indiana
M.A. in Mathematics, 1965 -- University of Kansas, Lawrence, Kansas
Ph. D. in Mathematics, 1977 -- University of Toledo, Toledo, Ohio

Dissertation Topic: Perturbation Theory, published in part as "Stability of Periodic Linear Systems by a Perturbation Method", Journal of Mathematical Analysis and Applications, Vol. 82, No. 1, Pp. 268-283, July, 1981
Teaching Experience: Ball State University, Instructor, 2 years, 1965-67
West Virginia Institute of Technology, 10 years 1970-198r,
Central Michigan University, 1 year, 1980-81
Ferris State University, 1981 -present, Professor of Matherretics

Past courses taught: Algebra and Trigonometry, Calculus and Analytic Geometr:
Differential Equations, Probability and Statistics, Matherczinal
Statistics, Biostatistics, Modern Algebra, College Geometr: Numerical Analysis, Advanced Calculus (both applied and theoretical), Mathematical Modeling, Linear Algebra, Mathematics for Technology, Complex Variables, Fortran. Pascal, Basic, and Computer Graphics.

> Consulting Experience: Statistical work for the Nursing Department at Ball State University. Statistical work for roof fall study done by Mining Engineering. Department at West Virginia Institute of Technology for OSHA. Statistical testing consultant for Standard Laboratories, Charleston, W. Va. Actuarial study for Human Resources at Ferris State University.

Recent Professional Activities:

> Sabbatical Leave--Winter 1988-89 Studied Chaotic dynamics and gave a series of three open lectures, January and February 1989. Attended a course in chaos in late February to May 1989 at University of Arizona given by Dr. Yves Pommeau.

Actuarial Exams--Passed at highest level (10)
Exam 100--Nov. 1990 (Calculus and Linear Algebra)
Exam 110--Feb. 1991 (Statistics)

Conferences--MAA,AMS National meetings in Atlanta, Jan. 1988
Louisville, Jan. 1990
(Short Course in Chaos) Providence, Aug. 1988
Baltimore, Jan. 1992
Cincinnati, Jan. 1994
MAA-Michigan Sections May, 1987-1990 and Notre Dame
Tri-Section Meeting 1992

International Conference in Math. Educ. in Quebec, 1992

Other--Have been active in the reform calculus movement and in using technology in the teaching of mathematics. Responsibility for implementation of Actuarial Science program at Ferris State University. Sole advisor for Actuarial Science students. As coordinator of the Applied Mathematics Program 1990-93, I was responsible for the conversion of our programs to semesters. I have given a series of lectures to area high school mathematics classes in the subject of discrete dynamics.

References available on request.

The scale of grades runs from 0 to 10. Passing grades are 6 through 10. A grade of 0 does not mean that the candidate received no credit but that he/she had a very poor paper. Similarly, a grade of 10 indicates a very fine paper but not necessarily a perfect one.

ARNOLII,GENE WILLIAM
MATHEMATICS LIEF•T
FERRIS STATE UNIUERSITY
BIG FAFIIIS MI 49307

