A PROPOSED MODIFICATION OF THE KING-DEVICK SACCADE TEST AND ITS CORRELATION TO READING LEVEL IN A SECOND GRADE POPULATION

By:
John J. Marcin

Submitted: April, 1981 Advisor: Ralph Garzia, O.D.
Ferris State College
College of Optometry

OPT 699: Special Studies

In light of the intimate relationship between saccadic eye movements and reading, measurements of saccadic fixation ability are often utilized as indicators of poor reading ability. The Pierce Saccade Test is a standardized test which has been used in the past for this purpose. This test has some shortcomings, in that the saccades involved are widely separated and equally spaced, resulting in contamination due to habituation and anticipation. Further, the amplitudes and line width of the required saccades are far greater than those habitually encountered in normal reading tasks. The King-Devick modification of the Pierce Test added more fixations to each line, thus reducing the amplitudes of the required fixations, and subsequently found that their test better differentiated between good and poor readers than did the Pierce Test. However, the King-Devick Test still utilizes a greater line width, and somewhat larger saccadic amplitudes than are commonly encountered in normal reading.

In an effort to simulate the magnitude of saccades and line widths most commonly used in everyday reading material, a new saccade test was devised, based on the modification of King-Devick Test III. This test, along with $K-D$ III (King-Devick III), was run on 33 second grade students in the Big Rapids area, whose age ranges were seven years and four months to nine years and one month. Each of the students were classified as either adequate or inadequate readers by the estimation of their classroom teacher, with whom they had worked for approximately seven months. Mean values and standard deviations were determined for each of the groups, and
correlations between reading abilities and test scores were determined for each of the tests administered.

The results indicated a good correlation between the KD-III and the modification thereof, when applied to good readers, but a poor correlation between the two tests when used on poor readers. The study showed the difference in the means for good and poor readers to be significant to the . 001 level for the KD-III Test; however, the difference in the means for the modified saccade test were not found to be significant at the .05 level necessary for clinical use. There was also a significant difference in the means for the two tests, indicating that the format for presentation of the figures is a very important factor in both the time required for completion of the task, and for the ability of the test to differentiate between good and poor readers. The significant difference in means between the two groups with the KD-III indicates this test is much better for differentiating between good and poor readers than is the modification of the test used here.

Eye movements associated with reading have been subject to study for many years. Originally thought to be smooth and pursuit-like in nature, Professor Emile Javal, in 1978, discovered by simple observation that eye movements during reading were a series of small jumps with intervening fixation pauses, (17) and thus the term saccade was initially defined to be "rapid movements between fixation focuses that occur in reading. (5)

Following the realization that eye movements were not smooth and sweeping in nature, it became necessary to determine if visual information Is Laken in during saccadic movements. Ludlam (13) provides a brief literature summary of evidence to indicate a cortical suppression during saccadic movements, while Richards ${ }^{(14)}$ proposes a retinal suppression due to a shearing effect during movement. In any case, the important factor for this discussion is the agreement that some type of suppression does occur, indicating that all information acquired from reading must be taken in during the brief fixation pauses of approximately 250 msec . duration (3) found in the average reading task. Thus, it is apparent that the accuracy and speed of saccadic eye movements will play an important role in the efficiency of reading.

Measuring Saccadic Movements

Although four eye movement systems (saccadic, pursuit, vergence, and vestibular) interact constantly in normal reading activity, (3) the saccadic system has the greatest bearing, and hence has been given the most
consideration when correlating eye movements to reading deficiencies. The most effective currently available means of measuring eye movements is through infrared oculography, using units such as the EDL Reading Eye Camer A^{8}, or the Biometrics Eye Trac ${ }^{(B)}$. Several studies using these instruments have demonstrated that poor readers consistently make more fixations, more regressions, and longer fixations than do good readers for any given reading level. $(2,3,4,10,11)$ Unfortunately, the cost and relatively limited use of infrared oculographic units limit their use to educational institutions and those practitioners specializing in pediatric vision care. Clearly, a less expensive alternative for determining saccadic efficiency would be useful to the average practitioner.

John R. Pierce, O.D., of the School of Optometry at the University of Alabama in Birmingham, devised an indirect means of measuring saccadic accuracy, called the Pierce Saccade Test. The test consists of three cards, each with a column of fifteen numbers of approximately 20/70 Snellen size at 40 cm ., with the columns separated by $83 / 4$ inches (see Appendix I). The subject holds one of the cards before him, and is instructed to read the first number of the left column aloud, then the first number of the right column, the second number of the left column, etc. The time required for completion, as well as the number of errors for each card, are recorded and compared with standardized data for the subject's age and grade level in school. The Pierce Test has several inherent shortcomings: first, the separation of each of the figures by a constant amount introduces two constant errors of habituation and anticipation, as pointed out by King and Devick. ${ }^{(9)}$ Secondly, the separation of $83 / 4$ inches between figures results in a saccadic amplitude of
approximately 29 degrees at a 40 cm . working distance, hardly an amount commonly encountered in reading tasks. Leisman and Schwartz ${ }^{(12)}$ indicate that 20 degrees is the maximum angular movement within which the eyes should have to move for maximum reading efficiency. Additionally, a test using such a huge saccadic amplitude virtually eliminates one of the major characteristics of dyslexic saccadic behavior -- regressions. Since regressions are normally of relatively small magnitude, ${ }^{(15)}$ it seems unlikely that many regressions will occur over a 30 degree separation.

In 1976, Alan J. King and Steven Devick, at Illinois College of Optometry, came up with a modification of the Pierce Test, specifically designed to decrease the effects of anticipation and to reduce the amplitudes of the required saccades to a situation more closely related to an actual reading situation. The test is comprised of one demonstration card and three test cards, each containing eight rows of five numbers, each number spaced such that successive saccades are each of a different amplitude than the previous one. The numbers are printed in 11-point type, which corresponds to approximately $20 / 100$ reduced Snellen acuity at forty centimeters. The separation between the left and right margins is reduced from $83 / 4$ inches in the Pierce Test to 7 inches for the KingDevick Test. Subsequent testing found the King-Devick Saccade Test to show a chronological age/performance relationship similar to the Pierce Test, with better differentiation between good and poor readers with the K-D as compared to the Pierce.

The King-Devick Test, although decidedly more comparable to a normal reading task, still has some deficiencies in my opinion. First, although obviously much better than Pierce's 29° saccades, the calculated average saccade amplitudes for the $\mathrm{K}-\mathrm{D}$ tests at 40 centimeters are about 6.4°,
with a range of 2.1 to 9.9 degrees, somewhat greater than the 1 to 4 degree normal saccade amplitudes found in normal reading by Ciuffreda, et. al. Griffin, et. al. ${ }^{(6)}$ found that the longer saccadic movements were more easily and acurrately performed, citing Hyde's work which showed that short saccades were considerably more neurologically complex than longer movements ${ }^{(8)}$ as the reason why this is true. Thus, it seems that a test using even smaller saccadic amplitudes may give even more definitive results.

Another discrepancy between both the Pierce and King-Devick Tests and the average reading task is in the length of line used. The line length for the Pierce Test is 52 picas, and a 42 pica line is used in the King-Devick Test. (Note: a pica is a unit of measurement used in the printing industry. One pica corresponds to about $1 / 6$ th of an inch.) By comparison, legibility for 10 -point type is maximum when a line width of between 14 and 31 picas is used. (16) In addition, consider the following information:

> "(longer line widths)...yielded increases in fixations, pause duration, and regressions (in normal readers). In reading the very long lines, the major difficulty was to locate accurately the beginnings of successive lines following the back sweep from the end of the previously read line. When this difficulty is experienced, it tends to upset the normal reading process so much that re-establishment of the most efficient oculomotor patterns in reading successive lines becomes difficult or impossible." (l6)

In light of this information, the potential is there for false positive responses with respect to reading difficulties as judged by performance on either of the aforementioned tests. I feel it may be advantageous to investigate the potential of a test similar to the $K-D$ or Pierce, using a narrower line width and smaller interfixational distances.

Method

In order to evaluate the impact of a different presentation of a test similar to the King-Devick or the Pierce Tests, a modification of the K-D III Test was evaluated and compared to $K-D$ III itself, with regards to either test's efficacy in differentiating between good and poor readers. The format of the author's modification of $K-D$ III may be examined in Appendix III. The author's test uses forty numbers of a $20 / 100$ size, as does King-Devick III Test. The column width for the author's test (herein referred to as the JJM Test) was, however, $3 \frac{1}{2}$ inches in width, or 21 picas, as opposed to the 7 inch line width for the King-Devick Test. Also, the numbers in the JJM Test are presented in five lines with eight numbers in each line, rather than eight lines with five letters in each, as in the case of the King-Devick. As in the KD Tests, the JJM Test has its numbers distributed at random intervals within each line, to avoid habituation. The numbers in the JJM Test are separated by a mean distance of 1.26 centimeters, with a range of 0.4 centimeters to 2.7 centimeters. If tested at forty centimeters, the angular extent of the saccades required to fixate each number have a mean value of 1.8 degrees, wtih a range of from 0.6 degrees to 3.9 degrees. Thus, the number, size, and orientation of the stimuli are the same in each of the tests, with the only factor having been altered in the JJM Test being the angular separation and line width of the stimuli. In this manner, evaluation of the two tests on the same populations of good and poor readers will enable us to assess both the efficacy of defining poor readers in a population using $K D$ III, and whether or not the aforementioned modification will improve the test's efficacy.

The JJM Test and KD III were run on a group of 33 second grade students
at Riverview Elementary School in Big Rapids, Michigan, in early April of 1981. A11 subjects were judged by their teachers to be of normal intelligence. Each of the children were instructed to read each of the numbers aloud, in the order designated by the King-Devick demonstration card, to proceed as rapidly as possible, but to try to make as few errors as possible also. The order in which the tests were presented was switched with each successive subject, so that familiarity with the task was not a factor on either of the tests. The subjects, whose ages ranged from seven years and four months to nine years and one month, were divided into two groups: adequate and inadequate readers for grade level. The groupings were determined by the teachers with whom the children had been working for approximately eight months when the testing had been carried out. It was felt that this means of classification was sufficiently accurate due to the fact that both teachers are well-gualifled Indivhduals who had been working with the children for a substantial period of time. The examiner did not know which group the child was in at the time of the testing.

Data
Statistical analysis of the data obtained through the previously described experiment is as follows:
D ATA

Good Reader		Poor Reader		Good Reader		Poor Reader	
X	x^{2}	X	x^{2}	X	x^{2}	X	x^{2}
29	841	42	1764	27	729	31	961
20	400	50	2500	18	324	27	729
27	729	31	961	26	676	20	400
38	1444	38	1444	28	784	33	1089
34	1156	44	1936	24	576	30	900
37	1369	41	1681	22	484	29	841
24	576	41	1681	23	529	33	1089
28	784	39	1521	20	400	28	784
30	900	40	1600	27	729	21	441
33	1089	31	961	28	784	24	576
27	729	29	841	22	484	33	1089
20	400	42	1764	21	441	21	441
28	784	40	1600	19	361	29	841
28	784			28	784		
41	1681			35	1225		
28	784			25	625		
27	729			20	400		
33	1089			23	529		
38	1444			30	900		
36	1296			30	900		
$\begin{array}{r} \Sigma x=606 \\ n=20 \end{array}$	$\Sigma x^{2}=19008$	$\begin{array}{r} \Sigma x=508 \\ n=13 \end{array}$	$\Sigma x^{2}=20254$	$\begin{array}{r} \sum \mathrm{X}=596 \\ \mathrm{n}=20 \end{array}$	2x $x^{2}=12664$	$\begin{array}{r} \Sigma X=359 \\ \mathrm{n}=13 \end{array}$	$2 x^{2}=10181$

KD III:

Croup	\underline{n}	\bar{x}	s.d. (8)
Overall	33	33.75 sec	7.19 sec
Good Readers	20	30.3	5.78
Poor Readers	13	39.0	5.79

STUDENT'S T-TEST:
$\Sigma X_{1}^{2}=19008-\frac{(606)^{2}}{20}=646.2$
$\Sigma X_{2}^{2}=20254-\frac{(508)^{2}}{13}=379.47$
$t=\frac{30.3-39.1}{\sqrt{\left(\frac{646.2+379.47}{31}\right)\left(\frac{1}{20}+\frac{1}{13}\right)^{1}}}=-4.24$ (significant at . 001 level)

JJM TEST:

Group	n	\bar{x}	s.d. (\$)
overal1	33	25.8 sec	4.61 sec
good readers	20	24.8	4.31
poor readers	13	27.5	4.74

STUDENT'S T-TEST:
$\Sigma X_{1}^{2}=12664-\frac{(496)^{2}}{20}=363.2$
$\Sigma x_{2}^{2}=10181-\frac{(359)^{2}}{13}=267.1$
$\mathrm{t}=\frac{24.8-27.5}{\sqrt{\left(\frac{363.2+267.1}{31}\right)\left(\frac{1}{20}+\frac{1}{13}\right)^{7}}}=-1.72$ (not sig. @. 05 level)

Coefficients of Correlation:
For Good Readers: KD III and JJM, $r=0.70$
For Poor Readers: KD III and JJM, r $=0.10$

Results

The data shows several interesting results. First, the JJM Test took substantially less time to complete than did the KD-III when administered to the same population under the same testing conditions. A cursory examination of the two tests leaves the impression that the JJM Test should require less time to complete, at least in the mind of the author, and consequently this result is not particularly surprising. A result which is somewhat more surprising, at least with regards to the evidence presented earlier in this paper, is the relative significance in differences between the means for good and poor readers, as determined by the Student t-test. The difference between the means for the KD-III test were found to be significant at the .001 level, a very high level of significance. On the other hand, the difference between the means in the JJM Test were not found to be significant, even at the . 05 level necessary to be considered clinically significant. This level indicates that one can be quite confident that a poor reader will not do well on the KD-III, and that the opposite will occur for good readers. The differentiating ability of the JJM Test, however, is not sufficient that it may be used with confidence on a clinical basis. Possible explanations for this result will be discussed later.

Another interesting finding is that a good correlation ($r=0.7$) was found between good readers on the KD-III and the JJM Tests, but a poor correlation ($r=0.1$) was found between the two tests with respect to poor readers. From this, one can predict that, if a good reader scores at a certain level with respect to the mean on one of the tests, he can
be expected to score at a similar level with respect to the mean on the other test. The same can not be said for poor readers, however. Poor readers had much greater difficulty with the KD-III, scoring approximately 1.5 standard deviations below the mean for good readers on the same test. By contrast, the same poor readers had a mean time on the JJM which was only 0.6 standard deviations below the mean for good readers.

Discussion

The reduction of width and angular separation of the stimuli of the King-Devick Test, contrary to the evidence presented earlier in this paper, did not improve the test's ability to differentiate between good and poor readers, but rather decreased it substantially. Having presented evidence to indicate why this modification of the test may have been more definitive in the isolation of poor readers, followed by statistical evidence to indicate this was not the case, it now becomes necessary to postulate why the data came out as it did.

One serious problem with any of these "saccade tests" is the requirement of the subject to identify and read the numbers aloud while performing the test. Thus, this type of test is, at best, a test which measures saccadic accuracy indifectly, to, at worst, a number-calling test in which saccadic accuracy is only one of many significant variables. When administered in this fashion, the limiting factor determining the speed with which the task may be performed may not be saccadic accuracy at all; rather, it may be limited by the ability of the subject to recognize and recite the names of the numbers used. The JJM Test has been shown to be completed in considerably less time than $K D-I I I$, even
though the number of symbols in the two tests is the same. The response time for each symbol, therefore, is less for the JJM and consequently is probably more susceptable to this type of error than the KD. This may also explain the lack of significant difference in the means of the two groups on the JJM Test -- the JJM may be measuring something more closely related to an oral reading type of task than saccadic function. Thus, a relatively good oral reader with relatively poor saccadic function may perform adequately on the JJM and the converse may be true for a poor oral reader with good saccadic function. Further investigation needs to be carried out to isolate the effects of the number-calling from the saccadic function in these tests before anyone can say with confidence that they are a true indicator of saccadic function.

The very signficant difference in the means (.001 level) found for the KD-III Test in this study tends to reinforce the credibility of this test as a tool for differentiating between good and poor readers. King and Devick went as far as to say that their test identifies poor readers with deficient saccadic abilities -- I don't feel the test results can be carried that far. In their study, the KD Tests were able to isolate students with poor projected reading abilities, as estimated from their I.Q. scores. Their reading deficiencies may be due to any number of factors, saccadic efficiency being only one of them. The significant difference in the means allows one to say with confidence that a good reader will probably do well on the $K D$ Test, and the converse is true for the poor reader. However, when applied in reverse, the statement is not clear-cut. A distinct gray area exists when a given score on the KD is used to try to predict the reading level for a subject, particularly
when the score falls between the means for the two groups. If a score falls more than two standard deviations below the overall mean, one can say with 95% confidence that this score was not due to chance. For scores
less than $2 \mathrm{~s} . \mathrm{d}$. out, the statement becomes increasingly less accurate. (King and Devick selected their criteria for poor readers to be 1 s.d. or more below the man.)

In summary, this study revealed three significant findings:

1. The presentation and spacing of characters in a test such as the King-Devick or Peirce test has a definite effect upon the speed and accuracy of the performance of the task.
2. The proposed modification of the KD-III Test did not work as well as the original in differentiating between good and poor readers.
3. The King-Devick Test was found to exhibit a very significant difference in the means between tood and poor readers.

I feel the King-Devick saccade test in its present form may still be used as a tool in diagnosing oculomotor deficiencies in poor readers; the examiner should, however, keep in mind the deficiencies of the test, and the fact that it, in itself, is not a pure measure of saccadic function.

1. Birnbaum, Phyllis, M.S., and Martin H., O.D., F.A.A.O.
"Binocular Coordination as a Factor in Reading Achievement". Journal of the American Optometric Association, Vol. 39, No. 1, January 1968, p. 48-56.
2. Brickner, C. Ann, Ph.D., "The Analysis of Eye-Movement Recordings From Samples of Underachieving Secondary and Primary Students". McGraw-Hill Educational Developmental Laboratories, Inc. Reprinted from AV Communications Review, Vol. 18, No. 4, 1970.
3. Ciuffreda, Kenneth J., O.D., Bahill, A. Terry, Ph.D., Kenyon, Robert V., M.S., and Stark, Lawrence, M.D. "Eye Movements During Reading: Case Reports". American Journal of Optometry and Physiological Optics, Vol. 53, No. 8, August 1976, P. 389-395.
4. Elterman, R.D., M.D., Abel, L.A., Ph.D., Daroff, R.B., M.D., Dell'Osso, L.F., Ph.D., and Bornstein, J.L., Med. "Eye Movement Patterns in Dyslexic Children". Journal of Learning Disabilities, Vol. 13, No. 1, January 1980, p. 16-21.
5. Gay, Newman, Keltner, Stroud. Eye Movement Disorders. New York, 1974.
6. Griffin, Donald C., Ph.D., Walton, Howard N., MS, O.D., and Ives, Vera. "Saccades as Related to Reading Disorders". Journal of Learning Disabilities, Vol. 7, No. 5, May, 1974.
7. Haber, Ralph Norman. "Control of Eye Movements During Reading." Eye Movements and Physiological Processes, Vol. I, Ed. Richard Monty and John W. Senders, New Jersey: Lawrence Erlbaum Associates, 1976.
8. Hyde, J.D. "Some Characteristics of Voluntary Human Ocular Movements in the Horizontal Plane". American Journal of Ophthalmology, Vol. 48, No. 1, January 1959, p. 85-94.
9. King, Alan J., and Devick, Steven. The Proposed King-Devick Saccade Test and Its Relation to the Pierce Saccade Test and Reading Levels. Research paper submitted to Darrell Schlange, O.D., at Illinois College of Optometry, Chicago, Illinois. March, 1976.
10. Lefton, Lester A., Ph.D. "Eye Movements in Reading Disabled Children" Eye Movements and Physiological Processes, Vol. III, Ed. Richard Monty and John W. Senders, New Jersey: Lawrence Erlbaum Associates, 1976.
11. Lefton, Lester A., Ph.D., Lahey, Benjamin B., Ph.D., and Stagg, David I. "Eye Movements in Reading Disabled and Normal Children: A Study of Systems and Strategies". Journal of Learning Disabilities, Vol. 11, No. 9, November 1978, p. 22-31

Bibliography
Page 2
12. Leisman, Gerald, and Schwartz, Joddy. "Ocular-Motor Variables in Reading Disorders". Neuropsychology of Learning Disorders, ed. Gaddes. Knight/Baker.
13. Ludlam, William M. Review of the Psycho-Physiological Factors in Visual Information Processing as They Relate To Learning. American Optometric Association: "Vision and Learning Disability" literature.
14. Richards, W., "Saccadic Suppression". Journal Optical Society America Vol. 59, No. 5, 1969, p. 617.
15. Taylor, Stanford E. "Eye Movements in Reading: Facts and Fallacies". reprinted from American Educational Research Journal, Vo1. 2, No. 4, November, 1965, p. 3-11.
16. Tinker, Miles. "Legibility of Type for Adult Books" Basis for Effective Reading. Minneapolis: The University of Minnesota Press, 1965.
17. Woodworth, Robert S. Experimental Psychology. New York: Henry Holt and Co., 1938, p. 577, 719.

LIST OF APPENDICES

Appendix I: Pierce Saccade Test
 Appendix II: King-Devick Saccade Test
 Appendix III: JJM Saccade Test

Wh R. Pierea, O. D., Ph. I.

bateresity of llahatal in oifrimpham

The Pioree saccade Tost is a short, rellable cllniral test ior detormining samcodic ability hetwen the apes of 6 vears and adulthood. It is combosed of a demonstrat lon coad and three test cards. It can be administercd in a fels
 an ocular motility training program or the immediate effects of lenses anc prisins used to ald binocularicv.

The demonstration card corsista of 10 numbers of approximately $20 / 70$ reduced Snellen eou!valent. The letters are soparated horientally by $83 / 4$ inches and vertically hu $15 / 8$ inches. l.hes with arrows arce dr:m to indicate the watern in bifch the saccades are to loe nerformed on this test and the following threce tests. The patie:t is instructed to hold tho eaid in the frento-parallel plane at his normal reading distance. The card should be i!liminated bu 20 to 60 foot candles of glare irce and shatiow free illumination. The natient is instructed to call out all the numbers on the card as rapidly and accurately as han can beginumg with the ubper foft hand number, Lhon the ubor rifint thod number, the
 the demonstration cerd. If the pat lent moves his head durine the saceades on po demonstration card he has instructed to try iot to nove his head on the ollowin! cards.

- The thres test cards are combosed of 30 rabdoni y selected numbers belth the same mumbres hefng wsed on each catd but in a diferont seanemce. The lateral feparation wi tion numbers is $8 \quad 3 / 4$ incios. The vertical sejaration is inch on Gaths one abd II and $5 / 16$ inches on cand lle. Tests I and $1 f$ differ onlv in that fres 1 has a borizoutal 1 ine to visually fulde the patient in makjng the saccado. lest IIf differs [rom Tust if in that the vertfeal somaration of the numbers is: - boser, makfos it more difrfollt to maintain one's place durine the saccade. The frots lave becol stardardiocd on the bestis of mococoting all the tests and in the obder: bemonstration Card, lesil I, Test 11 and Test fll. The:o tests are adminfsterod in the same rinnor as the Demonstration cord with the excention that Lhey nre timed with a stomutch and the responses arc checked for accuracv.

Instructions: I bant vou to call out 211 of the lotters on this card as rapidlv and as accuratelv as possible in the waner indicated. Point to the baper left hand mumber then the urper rifitt hand number, then the socond left hand murber, the second rifht hand nussor, ete. If the patient precoeds difectlv domi sule colum, stop him, correct itim and repeat the instructions. ist: if the patient understands what he is to do and if his lis ready. Then tell hin, "ready, start", and herin timin: him. Siop the timer wimen he has competed calling ont all or the mumers. Kecord the time in seconds under the column indicated for Test T.

 . 11, l1. Sob 1 sam lo: 1f loset l wro:

1	2
1	4
5	6
7	8

and the paticnt callod out: $1,4,3,6,5,8,7$, ctc., his onlverror is an onfssion error having left out the number 2 .

If the pationt called nut $1,2,1,4,3,6,5,8,7$, etc. he has repeated the number 1 lwlce and it would be circled as an addition error.
iote that in both of the above examples the patient started making saccacics obliquely across the page, ohltoue saccades should be marlied with an arrow indicating the manner fin which the numers were called out, but the patient is onlv checked for the exact onission or addition error that he made.

If the pitlent called out $1,2,3,6,5,6,7,8$, the score sheet would he marked as follows and he wonld he marted for one omission error (4) and one addition erior (6)

1	$?$
1	4
5	6
7	8

Additfonal whsorvations: it should abso he noted by the trster whether or not the pationt does athe of the following:

Marked head movement: This is deftned no a gross head movement in which the head turnes more than halitwy across the page when making the accade.

Shight head movement: A noticeahle head movement that ia less than one hajf the distame actoss the fage is noted as a slight head movement.

No head movement is demoted by not checting elther one of the above catagories.

Uther observit fons dachude abnormal working distance, head tilt, froming, soowlitif, or squiltime.

STMUAPDIZATIO.d AVD NORMGTIUT: D.ATA

The trets here administrad to 289 schnal-ape children in a whtte middle

 stude. The tosts bere atmanistered by the anthor and liv fourth vear optometry

In hirminfham. All children tested bere capahle of performine the test and all dwa ate fucluded. There bere no frank strabismies and if the child was vearine apectacles, he was instructed to use ther. Acuities were not taken but ald dhddran wsted wore capable of discriminatiog the tosit type. Occasionallv, a chald lost hisi place or did not follow fastructions. They were lnsitucted asalm as to how to perform the test and then re-run fmedtately. The second time was recorded as their time for the test.

Children were grouped ty one year ape groups. The mean ape performance on Test 1, Test II, Test III and the sum of perforatance times on I, II, and ill were determined as well ass the mean for the sum of the addilion and omission errors on the three tests. Each incasurement was correlated with age and the varfance attributtable to age alone within each vear's age group was removed from the total variance for each age group.

The results of the mean performance times for all children on the three teats If presented in the next sraph. Note the curvilinear relationship with age in wifh the performance at 10 vears of afe hegins to asumptote not far from the performance of the adults. The corrclation between age and performance on test I is. 89 and Test II is . ${ }^{91}$, age and Test $1 I I$ is .87 , and age and test $1+11$ +III is3 93. This means that 80 percent of the varlahillty on the test can be predicted by afe alone. The remaining valance is deternined findlutdual differences, rimb variance, etc.
${ }^{7}$
Use of the age Vs. performance on Test $1+17=111$ graph. This graph indjcates he relation between total perfomance on all three tests and age. The abscissia reptesents age and the ardinate total time for all three tests. The performance a any child is determined on mach test. The total of his times on test $i+I I$ flll is determined and that value found on the ordinate. bropoing sitrafht down flom that point, the child's equivalent are is deternined. That is, at wat age wn: the average perfomance of other children the same as l!ts? For eyanple, if "chidds total time for rests $1+2 I+111$ was 93 seconds, his eruivalent afe or arr uthich othr chifdra perfomed at this level is 8 vears. If he were 12 yous ohd we could sav that ine is performing at the same leyel as an 8 vear old (il) Lhis test. Or if he vere foars old we could sav that he was a superior perfomm, pertoming at the same level as an 8 year old.

3 (2


```
8,
2
1
7
2 ..... 8
12
0



TEST I


TEST II


TEST III

\title{
KD Test (sample size 1202) \\ time in seconds \\ ERRORS
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Ago & & 1 & 11 & 111 & Tolal & 1 & 11 & 111 & Total \\
\hline 6 & of students Average S.D. & \[
\begin{aligned}
& 100 \\
& 3000 \\
& 1010
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 3105 \\
& 1286
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 3100 \\
& 1030
\end{aligned}
\] & \[
\begin{gathered}
100 \\
11003 \\
4002
\end{gathered}
\] & 100
132
232 & 100
381
350 & \[
\begin{gathered}
100 \\
1084 \\
830
\end{gathered}
\] &  \\
\hline 7 & - ol students Average S.D. & \[
\begin{aligned}
& 127 \\
& 207 \\
& 507
\end{aligned}
\] & \[
\begin{array}{r}
121 \\
3112 \\
013
\end{array}
\] & \[
\begin{aligned}
& 127 \\
& 4300 \\
& 1330
\end{aligned}
\] &  & 127
\(\therefore 12\)
\(: 196\) & 127
210
420 & \[
\begin{aligned}
& 127 \\
& 8.75 \\
& 801
\end{aligned}
\] & \[
\begin{aligned}
& 127 \\
& 1981 \\
& 1232
\end{aligned}
\] \\
\hline 8 & - of students Average S. \(D\) & \[
\begin{gathered}
223 \\
\because 00 \\
0.37
\end{gathered}
\] & 223
2000
185 & 223
3120
115.0 &  & 23
74 & \(\therefore 223\)
3.3
218 & \[
\begin{aligned}
& 223 \\
& =40 \\
& 453
\end{aligned}
\] & \[
\begin{aligned}
& 223 \\
& 338 \\
& 0.13
\end{aligned}
\] \\
\hline 9 & - ol students Average S D. & \[
\begin{array}{r}
201 \\
\because 102 \\
120
\end{array}
\] & \[
\begin{gathered}
207 \\
2280 \\
150
\end{gathered}
\] & 2018
2035
1088 & 207
3
304
204 & - 8 & \(20 \%\)
48
146 & 201
202
431 & \[
\begin{aligned}
& 207 \\
& 275 \\
& 508
\end{aligned}
\] \\
\hline 10 & - of students Average © 1 &  & \[
\begin{gathered}
117 \\
2019 \\
111
\end{gathered}
\] & \[
\begin{gathered}
117 \\
2118 \\
10: 1
\end{gathered}
\] & U'
\(10 \%\)
\(\therefore \because\) & \(\therefore 1\) & '1' & 111
112
030 & \[
\begin{aligned}
& 111 \\
& 183 \\
& 382
\end{aligned}
\] \\
\hline 11 & - ol students Average
: & " 12 & \begin{tabular}{l}
121 \\
\hline 10 \\
\hline 10
\end{tabular} & 121
\(\therefore 1110\) &  & \(1 \% 1\)
\(\because\) & \(1: 1\) & 131
0. & \[
\begin{aligned}
& 121 \\
& 120 \\
& 200
\end{aligned}
\] \\
\hline 12 & - ol students Average S D. & \[
\begin{gathered}
102 \\
10.94 \\
360
\end{gathered}
\] & \[
\begin{gathered}
102 \\
1108 \\
443
\end{gathered}
\] & 102
1042
531 &  & 102
18
76 & 02
21 & \(10 \%\)
44
156 & 102
83
226 \\
\hline 13 & - of students Average G 1 ) & 100
1020
252 & 100
1098
.12 & \[
\begin{gathered}
100 \\
10.90 \\
326 .
\end{gathered}
\] & \[
3: 3
\] & 100
13 & 100
18 & 100
36
108 & \[
\begin{array}{r}
100 \\
39 \\
120
\end{array}
\] \\
\hline 14 & - of students Average
\[
\because D
\] & 103 108 & \[
\begin{gathered}
103 \\
1001 \\
213
\end{gathered}
\] & \[
\begin{gathered}
105 \\
1013 \\
2409
\end{gathered}
\] & 103
534
304 & 103
\(\therefore 1\)
\(\therefore 1\) & 105
07
26 & 103
30
103 & \[
\begin{array}{r}
105 \\
41 \\
113
\end{array}
\] \\
\hline
\end{tabular}

\title{
FOR EACH TEST
}

By Age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & ACE & P-1 & P-2 & P-3 & P-TOTAL & KD-1 & KD-2 & KD-3 & KD-TOTAL \\
\hline Avg. Time & 6 & 38.20 & 41.27 & 39.67 & 119.20 & 34.40 & 39.47 & 42.07 & 115.93 \\
\hline Std. Dev. & 6 & 9.17 & 6.36 & 8.12 & 20.96 & 6.60 & 10.04 & 11.54 & 23.28 \\
\hline Avg. Time & 7 & 38.65 & 43.71 & 41.06 & 121.65 & 30.18 & 33.82 & 39.71 & 103.71 \\
\hline Std. Dev. & 7 & 7.17 & 10.17 & 6.93 & 18.81 & 4.72 & 6.19 & 7.09 & 14.46 \\
\hline Avg. Time & 8 & 30.56 & 33.96 & 37.12 & 101.72 & 24.40 & 27.92 & 32.60 & 84.60 \\
\hline Std. Dev. & 8 & 10.24 & 8.37 & 13.20 & 27.02 & 5.28 & 7.07 & 6.93 & 17.23 \\
\hline Avg. Time & 9 & 28.13 & 31.61 & 31.83 & 91.57 & 23.52 & 23.57 & 29.43 & 76.78 \\
\hline Std. Dev. & 9 & 8.43 & 10.38 & 8.61 & 22.31 & 7.86 & 6.35 & 8.68 & 20.74 \\
\hline Avg. Time & 10 & 25.32 & 28.11 & 28.63 & 82.05 & 21.26 & 22.79 & 25.00 & 69.08 \\
\hline id. Dev. & 10 & 7.40 & 7.74 & 7.48 & 20.48 & 4.78 & 5.09 & 7.48 & 15.57 \\
\hline Avg. Time & 11 & 20.39 & 24.13 & 25.09 & 70.91 & 20.09 & 19.87 & 24.39 & 64.04 \\
\hline Std. Dev. & 11 & 5.33 & 4.86 & 5.32 & 13.44 & 4.50 & 3.45 & 5.67 & 12.27 \\
\hline Avg. Time & 12 & 20.47 & 24.60 & 26.40 & 71.33 & 20.07 & 21.00 & 21.73 & 62.80 \\
\hline Std. Dev. & 12 & 4.91 & 5.87 & 6.40 & 15.78 & 2.99 & 4.24 & 3.77 & 9.82 \\
\hline
\end{tabular}
average times and standard deviations
FOR EACH TEST

By Grade in School
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & grade in SCHOOL & P-1 & P-2 & P-3 & P-TOTAL & KD-1 & KD-2 & KD-3 & KD-TOTAL \\
\hline Avg. Time & 1 & 37.26 & 40.70 & 40.26 & 118.31 & 32.30 & 37.30 & 40.30 & 110.00 \\
\hline Std. Dev. & 1 & 8.39 & 6.42 & 6.76 & 17.73 & 6.36 & 9.16 & 10.36 & 21.69 \\
\hline Avg. Time & 2 & 36.30 & 40.82 & 42.34 & 118.17 & 27.82 & 31.43 & 38.20 & 97.52 \\
\hline Std. Dev. & 2 & 10.31 & 11.04 & 12.30 & 26.28 & 5.80 & 5.74 & 6.48 & 15.29 \\
\hline Avg. Time & 3 & 27.90 & 32.08 & 30.50 & 90.50 & 23.80 & 23.54 & 29.16 & 76.54 \\
\hline Std. Dev. & 3 & 7.43 & 9.27 & 7.38 & 19.21 & 6.59 & 5.01 & 6.53 & 15.35 \\
\hline Avg. Time & 4 & 25.75 & 26.69 & 28.38 & 81.13 & 20.31 & 22.50 & 24.56 & 67.50 \\
\hline Std. Dev. & 4 & 7.28 & 6.36 & 6.37 & 17.01 & 5.55 & 6.81 & 6.93 & 17.95 \\
\hline Avg. Time & 5 & 23.00 & 25.33 & 27.30 & 75.54 & 20.42 & 20.67 & 24.40 & 65.48 \\
\hline d. Dev. & 5 & 6.48 & 6.95 & 7.26 & 19.46 & 4.88 & 4.22 & 5.93 & 13.31 \\
\hline Avg. Time & 6 & 20.18 & 24.50 & 25.75 & 70.33 & 20.17 & 20.75 & 22.96 & 63.63 \\
\hline Std. Dev. & 6 & 4.38 & 5.15 & 5.85 & 13.69 & 3.10 & 3.73 & 5.34 & 10.52 \\
\hline
\end{tabular}

AVERAGE ERRORS ANI STANDARD DEVIATIONS
FOR EACH TEST

By Age
\begin{tabular}{l|c|c|c|c|c|c|c} 
& AGE & \(\mathrm{P}-1\) & \(\mathrm{P}-2\) & \(\mathrm{P}-3\) & \(\mathrm{KD}-1\) & \(\mathrm{KD}-2\) & \(\mathrm{KD}-3\) \\
\hline Avg. Err. & 6 & 4.47 & 5.87 & 8.93 & 1.73 & 2.07 & 8.20 \\
Std. Dev. & 6 & 2.39 & 2.77 & 4.01 & 2.28 & 3.41 & 6.71 \\
\hline Avg. Err. & 7 & 3.71 & 5.94 & 6.41 & 1.24 & 3.71 & 7.82 \\
Std. Dev. & 7 & 3.64 & 4.02 & 4.08 & 1.09 & 4.58 & 6.63 \\
\hline Avg. Err. & 8 & 2.32 & 3.32 & 4.08 & 1.12 & 1.28 & 1.96 \\
Std. Dev. & 8 & 2.85 & 3.22 & 3.66 & 1.05 & 3.35 & 2.68 \\
\hline Avg. Err. & 9 & 1.35 & 1.30 & 3.87 & 1.22 & 0.48 & 1.83 \\
Std. Dev. & 9 & 1.61 & 2.03 & 2.77 & 1.41 & 1.41 & 2.31 \\
\hline Avg. Err. & 10 & 1.32 & 2.63 & 3.00 & 0.89 & 0.37 & 1.05 \\
Std. Dev. & 10 & 1.95 & 3.27 & 3.09 & 0.88 & 0.60 & 1.54 \\
\hline Avg. Err. & 11 & 1.30 & 1.61 & 3.36 & 0.64 & 0.50 & 1.26 \\
Std. Dev. & 11 & 1.89 & 2.41 & 2.65 & 0.73 & 1.14 & 2.61 \\
St. & 12 & 0.23 & 2.47 & 2.31 & 0.93 & 0.67 & 0.38
\end{tabular}

FOR EACH TEST

By Grade in School
\begin{tabular}{l|c|c|c|c|c|c|c} 
& \begin{tabular}{c} 
GRADE IN \\
SCHOOL
\end{tabular} & \(P-1\) & \(P-2\) & \(P-3\) & KD-1 & KD-2 & KD-3 \\
\hline Avg. Err. & 1 & 4.03 & 6.11 & 7.35 & 1.54 & 2.85 & 8.19 \\
Std. Dev. & 1 & 2.91 & 3.30 & 4.14 & 1.86 & 3.89 & 7.02 \\
\hline Avg. Err. & 2 & 2.65 & 3.17 & 5.87 & 1.17 & 1.48 & 3.09 \\
Std. Dev. & 2 & 2.99 & 3.24 & 3.95 & 0.98 & 3.01 & 4.08 \\
\hline Avg. Err. & 3 & 2.08 & 2.75 & 4.42 & 1.33 & 0.63 & 2.21 \\
Std. Dev. & 3 & 2.54 & 3.23 & 3.28 & 1.40 & 1.24 & 2.40 \\
\hline Avg. Err. & 4 & 1.19 & 2.00 & 2.63 & 0.69 & 0.38 & 1.19 \\
Std. Dev. & 4 & 1.80 & 2.56 & 3.05 & 0.89 & 0.62 & 1.72 \\
\hline Avg. Err. & 5 & 1.29 & 2.00 & 3.29 & 0.79 & 0.21 & 1.00 \\
Std. Dev. & 5 & 2.01 & 3.70 & 2.66 & 0.83 & 0.41 & 1.69 \\
\hline Avg. Err. & 6 & 0.46 & 2.13 & 2.63 & 1.38 & 0.71 & 0.88 \\
Std. Dev. & 6 & 0.88 & 3.23 & 3.06 & 3.27 & 1.43 & 2.31
\end{tabular}
\begin{tabular}{llllllllllll}
5 & 3 & 4 & & 1 & 6 & 8 & & 3 & 0 \\
4 & 1 & 6 & & 7 & & 3 & & 5 & 2 & & 9 \\
7 & 4 & & 5 & & 8 & & 4 & 2 & 9 & 7 \\
3 & 9 & 2 & & 4 & 6 & 2 & 9 & & 4 \\
1 & 3 & & 4 & 9 & & 5 & 1 & 8 & & 3
\end{tabular}

JJM TEST```

