```
Principles of Flexure with The Boston Envision Lens Senior Project By Ron and Sara Meyer
``` 1992

Introduction: The majority of corneas flatten from apex to the periphery with differing ecentricity. The central area of the cornea tends to be of low ecentricity in the range of approximately 0.3, but the mid-periphery begins to flatten at a rate of apporximately 0.7 . Not all corneas are the same however, some corneas are actually steeper in the mid-periphery than in the center apical region. This is however is rare. The concept of the Boston Envision lens is to match the posterior surface of the RGP lens to the geometry of the cornea, specifically multiple ecentricities. This should provide the patient with a better physical fit and the practioner with a more forgiving fit. This explains the concept of the Boston Envision lens. Flexure is infuenced by three main factors: corneal topography; lens thickness; and physical characteristics of the material. Fitting relationship of the lens to the cornea, and eye Iid tension also influence the amount of flexure. This explains the concept of flexure as studied in this report. The purpose of this study is to show the amount of flexure possible and the type of flexure that ofcurs with a standard Boston Envision lens as measured by over refraction, and over \(K^{\prime}\) s.
```

Methods: To study flexure subjects were required to have at
least 1.00 diopters of cylinder in their habitual Rx. Seven
subjects were tested,(14 eyes). Habitual Rx cylinder ranges were
from -2.50 diopters to -1.00 diopters, corneal cylinder ranges
were from 3.25 diopters to pl. The fitting set used was a boston
envision fitting set with the diameter of 9.6; B.C. ranges used
were from 7.40 to 8.10; and the fitting set contact lens power
was -3.00 diopters. The average center thicknesses for this
particular fitting set was . 15mm, with no more than .01mm
difference between each contact lens center thickness. Each
subject tested was fitted with a contact lens on K; . }50\mathrm{ steeper
than K; . }50\mathrm{ flatter than K. Each lens fitted was put through two
tests, an over refraction and keratometry measurements.

```
patient 非i
\[
\begin{array}{llll}
\begin{array}{lll}
\text { Habitual Rx } & \text { O.D. }-.50-1.00 \times 035 & 20 / 15 \\
& \text { O.S. }+.50-2.50 \times 135 & 20 / 15 \\
\text { K Readings } & 0 . D \cdot 43.75 @ 038 & 44.75 @ 128 \\
& 0 . S .45 .75 @ 048 & 43.75 @ 138
\end{array}
\end{array}
\]
\[
\text { Contact fit on } \underline{K} \quad \text { B.C. Dia. Power }
\]
\[
\begin{array}{llll}
\text { O.D. } 7.70 & 9.6 & -3.00
\end{array}
\]
\[
\begin{array}{llll}
\text { 0.S. } 7.70 & 9.6 & -3.00
\end{array}
\]
over refraction O.D. +1.50-. \(25 \times 045\) 20/15
O.S. +2.25-.75 X 135 20/15
over K
O.D. \(41.50 @ 01541.50 @ 105\)
0.S. 41.50@015 41.50@105

Contact fit .50 steep B.C. Dia. Power
\begin{tabular}{llll}
O.D. & 7.60 & 9.6 & -3.00 \\
O.S. & 7.60 & 9.6 & -3.00
\end{tabular}
over refraction O.D. +1.50 sph 20/15
\[
\text { O.S. }+2.25-.50 \times 125 \quad 20 / 15
\]
\begin{tabular}{lll}
over K O.D. \(41.50 @ 025\) & \(42.00 @ 115\) \\
& O.S. \(41.75 @ 066\) & \(42.00 @ 154\)
\end{tabular}
\begin{tabular}{rlll}
Contact fit \(\frac{.50}{} \frac{\mathrm{flat}}{}\) & B.C. & Dia. & Power \\
O.D. & 7.80 & 9.6 & -3.00 \\
O.S. & 7.80 & 9.6 & -3.00
\end{tabular}
over refraction O.D. +2.00 sph 20/15
O.S. \(+3.25-.75 \times 135 \quad 20 / 15\)
over K
O.D. 40.75 @ 01041.00 @ 100
0.S.40.75@020 41.00@110

Patient 非2
Habitual \(\hat{R} \times\) O.D. \(-6.25-1.00 \times 180 \quad 20 / 15\)
O.S. \(-6.00-1.00 \times 180 \quad 20 / 15\)

K Readings O.D. 42.75 @ 180 44.00@ 090
0.S.43.00@172 44.00@082

Contact fit on K
B.C. Dia.

Power
\(\begin{array}{llll}\text { O.D. } 7.90 & 9.6 & -3.00\end{array}\)
\(\begin{array}{llll}\text { O. S. } & 7.80 & 9.6 & -3.00\end{array}\)
over refaction O.D. \(-2.00 \mathrm{sph} 20 / 15\)
O.S. \(-2.50 \mathrm{sph} 20 / 15\)
over \(K\)
O.D.40.00@180 40.00@ 090
0.S.40.50@170 40.25@080

Contact fit . 50 steep B.C. Dia. Power
\(\begin{array}{lll}\text { O.D. } 7.80 & 9.6 & -3.00\end{array}\)
\(\begin{array}{llll}\text { O.S } & 7.70 & 9.6 & -3.00\end{array}\)
over refraction O.D. -2.75 -. \(75 \times 180\) 20/15
O.S. \(-2.50 \mathrm{sph} \quad 20 / 15\)
over K
O.D. 40.25 @ 18040.87 @ 090
0.S.41.00@18040.75@090

Contact fit .50 flat D.C. Dia. Power
\(\begin{array}{llll}\text { O.D. } & 8.00 & 9.6 & -3.00\end{array}\)
\(\begin{array}{llll}\text { O.S. } 7.90 & 9.6 & -3.00\end{array}\)
over refraction O.D. \(-1.75 \mathrm{sph} 20 / 15\)
O.3. \(-2.25 \mathrm{sph} 20 / 15\)
over \(K\)
O.D. 39.25 @ 18039.25 @ 090
O.S.40.00@18040.00@090

Patient 非3
Habitual Rx O.D. undeterminable (kerataconus) 20/40 O.S. \(-.25-1.25 \times 095 \quad 20 / 15\)

K readings O.D. 42.50@005 42.50@095
O.S.43.25@155 42.50@065

Contact fit on \(K\)
B.C. Dia.

Power
\(\begin{array}{llll}\text { O.D. } & 7.90 & 9.6 & -3.00\end{array}\)
\(\begin{array}{llll}\text { O.S. } & 7.90 & 9.6 & -3.00\end{array}\)
over refraction O.D. \(+2.25 \mathrm{sph} \quad 20 / 15\)
O.S. \(+3.00 \mathrm{sph} \quad 20 / 15\)
over \(K\)
O.D. \(39.50 @ 180\) 40.25@ 090
O.S.39.75@180 39.50@090

Contact fit .50 steep B.C. Dia. Power
\(\begin{array}{llll}\text { O.D } & 7.80 & 9.6 & -3.00\end{array}\)
\(\begin{array}{llll}\text { O.S. } & 7.80 & 9.6 & -3.00\end{array}\)
over refraction O.D. +2.50 sph 20/15
O.S. +2.75-.50 X \(105 \quad 20 / 15\)
over K
O.D. 40.50 @ 180 40.50@ 090
O.S.41.00@180 40.50@090

Contact fit .50 flat B.C. Dia. Power
\begin{tabular}{llll}
O.D. & 8.00 & 9.6 & -3.00 \\
O.S. & 8.00 & 9.6 & -3.00
\end{tabular}
over refraction 0. D. \(+2.50 \mathrm{sph} 20 / 15\)
O.S. \(+3.00-.50 \times 095 \quad 20 / 15\)
over \(K\)
O.D. 40.50 @ 180 40.25@ 090
O.S. \(39.50 @ 180\) 39.50@ 090

Patient 非
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Habitual Rx & O.D & -1.25 & -1.00 & X 105 & & 0/15 \\
\hline & 0.5 & -0.75 & -1.00 & X 075 & & 0/15 \\
\hline \(\underline{\mathrm{K}}\) readings & O.D & 42.50 & (160 & 42.50 & @ & \\
\hline & O.S & 42.575 & @16 & 42.25 & & 075 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
Contact fit on \(K\) & & B.C. & Dia & Power \\
& O.D. & 7.90 & 9.6 & -3.00 \\
& O.S. & 8.00 & 9.6 & -3.00
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Over Refraction} & O.D. & +0.75-0.75 & X 085 & 20/15 & \\
\hline & o.s. & +1.75-0.25 & X 095 & 20/15 & \\
\hline \multirow[t]{2}{*}{Over K} & O.D. & 40.50 @ 165 & 40.50 & @ 075 & \\
\hline & o.s. & 40.25@165 & 40.00 & @ 075 & \\
\hline \multirow[t]{3}{*}{Contact fit . 50 flat} & & B.C. & Dia & & Power \\
\hline & O.D. & 8.00 & 9.6 & & -3.00 \\
\hline & o.s. & 8.10 & 9.6 & & \(-3.00\) \\
\hline
\end{tabular}
Over Refraction O.D. \(+2.00-0.75 \times 085\) 20/15
Over K O.D. \(39.50 @ 165\) 39.50@ 075
 O.S. 39.00 @ 16539.25 @ 075

Patient 非5

Patient 非6
\begin{tabular}{llllll}
Habitual Rx & O.D. & -0.25 & \(-1.50 \times 180\) & \(20 / 15\) \\
\hline & O.S. & -0.25 & \(-1.25 \times 175\) & \(20 / 15\) \\
K readings & O.D. & \(44.00 @ 180\) & \(46.00 @ 090\) \\
& O.S. & \(44.00 @ 170\) & \(45.50 @ 080\)
\end{tabular}

Contact fit on K
B.C. Dia
\(\begin{array}{llll}\text { O.D. } & 7.70 & 9.6 & -3.00\end{array}\)
\(\begin{array}{llll}\text { O.S. } & 7.70 & 9.6 & -3.00\end{array}\)
Over Refraction O.D. \(+2.50-0.50 \times 085\) 20/15
O.S. \(+2.50-0.50 \times 095 \quad 20 / 15\)
over K
O.D. 41.50 @ 17040.75 @ 080
O.S. 41.25@170 42.00@ 080
\begin{tabular}{rrrr}
Contact fit \(\frac{.50}{}\) steep & B.C. & Dia & Power \\
O.D. & 7.60 & 9.6 & -3.00 \\
O.S. & 7.60 & 9.6 & -3.00
\end{tabular}

Over Refraction O.D. \(+2.75-0.50 \times 095\) 20/15
O.S. \(+2.75 \mathrm{sph} \quad 20 / 15\)

Over K
O.D. \(41.50 @ 180 \quad 41.50 @ 090\)
O.S. 41.00@18041.50@090
\begin{tabular}{rrrr}
Contact fit .50 flat & B.C. & Dia & Power \\
O.D. & 7.80 & 9.6 & -3.00 \\
O.S. & 7.80 & 9.6 & -3.00
\end{tabular}

Over Refraction O.D. \(+3.75-0.75 \times 090 \quad 20 / 15\)
O.S. \(+3.00-0.25 \times 090 \quad 20 / 15\)

Over K O.D. \(40.25 @ 170 \quad 39.75 @ 080\)
\[
\text { O.S. } 40.75 @ 170 \quad 40.25 @ 080
\]

Patient 非7
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Habitual Rx & O.D. & -4.00 & -2.00 & \(\times 075\) & & 20/15 \\
\hline & O.S. & \(-4.00\) & -1.25 & X 105 & & 20/15 \\
\hline \(\underline{K}\) Readings & O.D. & 46.00 & (c) 160 & 44.00 & @ & 070 \\
\hline & O.S. & 46.00 & @ 020 & 45.00 & & 110 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
Contact fit on \(K\) & & B.C. & Dia & Power \\
& O.D. & 7.70 & 9.6 & -3.00 \\
& O.S. & 7.50 & 9.6 & -3.00
\end{tabular}

Over Refraction O.D. \(-1.50-0.50 \times 050\) 20/15
O.S. _1.00-0.25 X \(130 \quad 20 / 15\)

Over K
O.D. 41.00 @ 180 40.75 @ 090
O.S. 42.25@17042.25@080
\begin{tabular}{rrrr}
Contact fit -50 steep & B.C. & Dia & Power \\
O.D. & 7.60 & 9.6 & -3.00 \\
O.S. & 7.40 & 9.6 & -3.00
\end{tabular}

Over Refraction O.D. \(-0.75-0.50\) X 080 20/15
O.S. -1.75-0.50 X 095 20/15

Over K
O.D. 41.75@170 41.00@080
O.S. 43.25@010 42.25@100
\begin{tabular}{rrrr}
Contact fit \(\frac{.50}{} \underline{\text { flat }}\) & B.C. & Dia & Power \\
O.D. & 7.80 & 9.6 & -3.00 \\
O.S. & 7.60 & 9.6 & -3.00
\end{tabular}

Over Refraction O.D. +0.50-0.50 X 075 20/15
O.S. \(-1.00-0.75 \times 105 \quad 20 / 15\)

Over K
O.D. 40.50 @ 17040.00 @ 080
O.S. 41.75 @ \(17541.00 @ 085\)
```

Average Cylinder found by Over K (flexure)
Average over K cylinder on K
-.30 diopters
Average over K cylinder . }50\mathrm{ steep
-.38 diopters
Average over K cylinder . 50 flat
-. }33\mathrm{ diopters
Average Cylinders found by Over Refraction (residual astig.)
Average over refractive cylinder on K
-. 30 diopters
Average over refractive cylinder . 50 steep
-. 31 diopters
Average over refractive cylinder . 50 flat
-.31 diopters

```

Discussion: The purpose of this experiment was to see if the Boston Envision exhibited flexure and if so the characteristics of that flexure. In this study we found the Envision lens flexed very little, however we feel that if the Envision lens was designed to flex, (thinner center thickness), the lens would flex more. On average the steeper fit flexed more than the flat fit, and the flat fit flexed more than the on K fit. These caracteristics mimic the flexure characteristics of regular RGP lenses. Having done such a small amount of subjects the results and averages appear very minute in differences. The amount of flexure exhibited was very slight due to the center thickness of the trial set used, much better results about the type of flexure that could be obtained with this lens can be studied by using a trial set with a thinner center thickness. If the highest and lowest measurements in cylinder that were obtained, were thrown out, the results changed very little. The best and most reliable measurments were obtained from the subjects that had worn RGP lenses in the past. In conclusion we feel that the aspheric design of the Boston Envision lens does not change the flexure characteristics from that of a regular RGP lens. This lens can be considered when flexure is desired, if the center thickness is decreased.```

